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Abstract

We introduce the symplectic group Sp, (A, o) over a noncommutative algebra A with
an anti-involution o. We realize several classical Lie groups as Sp, over various
noncommutative algebras, which provides new insights into their structure theory. We
construct several geometric spaces, on which the groups Sp, (A, o) act. We introduce
the space of isotropic A-lines, which generalizes the projective line. We describe the
action of Sp,(A, o) on isotropic A-lines, generalize the Kashiwara-Maslov index of
triples and the cross ratio of quadruples of isotropic A-lines as invariants of this action.
When the algebra A is Hermitian or the complexification of a Hermitian algebra, we
introduce the symmetric space Xsp, (4,+), and construct different models of this space.
Applying this to classical Hermitian Lie groups of tube type (realized as Sp, (A, o))
and their complexifications, we obtain different models of the symmetric space as
noncommutative generalizations of models of the hyperbolic plane and of the three-
dimensional hyperbolic space. We also provide a partial classification of Hermitian
algebras in Appendix A.
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1 Introduction

The special linear groups SL»(R), when R is a commutative ring, are among the
most important and best studied groups in mathematics. They arise in many different
contexts: for example in number theory and arithmetic geometry and in the theory of
finite simple groups. In the special case when R = R or C, they are ubiquitous in Lie
theory and in representation theory. Via their geometric actions, they are fundamental
objects in projective, conformal and hyperbolic geometry.

The main aim of this paper is to generalize these groups to the case when R is
a noncommutative ring. Unfortunately, for a noncommutative ring, the definition of
SL>(R) is tricky, see [4, 5] and the comments below.

We will thus slightly change our point of view, and notice that, for a commutative
ring R, the special linear group SL; (R) is isomorphic to the symplectic group Sp, (R).
In this article we develop the theory of symplectic groups Sp,(A, o) over possibly
noncommutative algebras A with an anti-involution o. We show that many aspects of
the classical SL; theory can be developed over such noncommutative algebras (A, o).
We realize several classical Lie groups of higher rank as Sp, over a noncommutative
algebra, thus providing new insights into the theory of such Lie groups.

(1) We define the group Sp,(A, o) and describe its action on a generalization of the
projective line: the space of isotropic lines. We generalize the Kashiwara-Maslov
index of triples and the cross ratio of 4-tuples of isotropic lines.

(2) We introduce Hermitian algebras (A, o) (see Definition 2.13), a special class of
R-algebras exhibiting positivity properties. In this case, we construct different
models of the symmetric space associated to Sp,(A, o) and its complexification
Sp,(Ac, oc). We obtain generalizations of several models of the hyperbolic plane
and the three-dimensional hyperbolic space, which are the symmetric spaces asso-
ciated to SL(2, R) and SL(2, C) respectively.

(3) We show that most classical Hermitian Lie groups of tube type, such as the standard
real symplectic group Sp(2n, R) can be naturally realized as Sp,(A, o). This
explains many aspects of the structure theory of Hermitian Lie groups of tube
type.

(4) As an application we describe new explicit models of the symmetric spaces asso-
ciated to the complex Lie groups Sp(2n, C), GL(2n, C), and O(4n, C).

(5) A large part of the theory outlined in (2) is completely algebraic, and works even
when R is replaced by any real closed field. This may be of interest for some
applications.

In [4, 5] two of the authors started to develop the general theory of Lie groups and
Lie algebras over noncommutative rings. This is a highly non-trivial theory. Some of
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the difficulties can be already be seen when trying to define the group SL, over a
noncommutative ring. It is immediate to define the group GL,, over a noncommutative
ring R as linear invertible maps from R” to R". But there is no appropriate definition
for the group SL,, as a subgroup of GL, because there is no canonical choice of a
determinant, even though there is rich theory of quasi-determinants [10].

Our approach is motivated by the notion of ®-positivity, a generalization of
Lusztig’s total positivity in the context of real Lie groups which are not necessarily
split, introduced in [11, 12, 22]. Hermitian Lie groups of tube type admit a ®-positive
structure.! The combinatorics of this @-positive structure is governed by the Weyl
group of a root system of type Ay, making Hermitian Lie groups of tube type “look
like” SL, theories over noncommutative algebras. Here we make this precise.

Our description of the different models of the symmetric spaces for most of the
Hermitian groups of tube type shows that the geometry of these symmetric space is
a noncommutative version of the classical planar hyperbolic geometry. This is not
surprising: for example a well-known model of the symmetric space of Sp(2n, R)
is the Siegel upper half space, and the formulae describing this model look like the
formulae of planar hyperbolic geometry, with matrices replacing numbers. The theory
developed here puts this observation into a more general theoretical framework.

Even more interesting is our description of different models of the symmetric spaces
of the complexifications of the groups discussed above, such as Sp(2n, C), GL(2n, C),
O(4n, C). Here we show that the geometry of their symmetric spaces is a noncommu-
tative version of the classical 3-dimensional hyperbolic geometry. This fact is more
surprising.

We believe that this new point of view can be helpful and leads to new applications.
An immediate application is that the construction of noncommutative coordinates for
symplectic representations of fundamental groups of punctured surfaces developed in
[2] and its relation to the noncommutative cluster algebras introduced in [6] generalizes
to representations into classical Hermitian Lie groups of tube type. This will appear
in a forthcoming work.

We now describe the results of the paper in more detail.

1.1 Symplectic groups over involutive algebras

Let K be a field and consider an associative, possibly noncommutative unital finite-
dimensional K-algebra A. Let 0 : A — A be an anti-involution, i.e. a K-linear
map with o (ab) = o(b)o(a) for all a,b € A and o2 = Id. We denote the set of
fixed points of o by A°. Then we introduce the non-degenerate sesquilinear form
w: A% x A2 — A, defined by

w(x,y) =a@)’Qy,

! In fact, for Hermitian Lie groups the ®-positive structure is related to the theory of Lie semigroups.
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0

forallx,y € A2 and Q = (_1

é) The symplectic group Sp,(A, o) is defined as

Spy(A, 0) = Aut(w) = {f € Aut(A?) | Vx,y € A% : o(f(x), f()) = o(x, )} .

Similar to the classical case, we look at natural spaces on which the group Sp, (4, o)
acts. The first such space is our noncommutative analog of the projective line. The
group does not act transitively on the space of all lines in A2, hence we restrict our
attention to the lines that are isotropic for w:

P(s(w)) := {xA | w(x,x) =0, x € A regular},

where an element x € A? is called regular if there exists y € A such that x, y form
a basis. Two isotropic lines x A and y A are said to be transverse if x, y form a basis.

The action of Sp,(A, o) on P(Is(w)) has some of the features we know from
projective or Mobius geometry, e.g. the action on quadruples of points preserve an
invariant that generalizes the cross-ratio:

Theorem 1.1 (1) The group Sp,(A, o) acts transitively on P(Is(w))

(2) The group Sp, (A, o) acts transitively on the set of pairs of transverse isotropic
lines.

(3) The Sp,(A, o)-orbits in the space of pairwise transverse triples of isotropic lines
are in one-to-one correspondence with the orbits of the action of the group of
invertible elements A* on the set of invertible fixed points (A°)* by

A* x (A%)* > (A9)*
(a, b) > abo (a).

This gives rise to a generalization of the Kashiwara-Maslov index.

(4) The Sp,(A, o)-orbits in the space of pairwise transverse 4-tuples of isotropic
lines are in one-to-one correspondence with the orbits of the action of the group
of invertible elements A on the set A of products of invertible fixed points (A®)*,
Ao =1{bb' | b,b' € (A?)*}:

A* x Ao = AO
(a,b) +> aba=".

The conjugacy class in Ag is thus a noncommutative cross-ratio of a four-tuple of
pairwise transverse isotropic lines.

Of particular interest to us is a special class of involutive algebras that we call
Hermitian algebras. We describe the geometry of the symmetric spaces for Sp, (A, o),
when (A, o) is Hermitian or the complexification of an Hermitian algebra.

Hermitian algebras are algebras (A, o) over a real closed field K where the fol-
lowing holds: if a, b € A, then a?> + b* = 0 if and only if a = b = 0. Readers
not familiar with real closed fields can simply think about the case where K = R,
since this is usually the most interesting case. Involutive algebras are closely related
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to Jordan algebras, and Hermitian algebras give rise to formally real Jordan algebras
see Sect. 2.3. A key feature of Hermitian algebras is the existence of a proper convex
cone A9 C A°.

In the main body of the paper, we focus on semisimple Hermitian algebras. So, for
the rest of the introduction, whenever we say Hermitian algebra, we mean semisimple
Hermitian algebra. In Appendix A we consider a more general class of rings with anti-
involution, which we call pre-Hermitian, investigate the theory of general Hermitian
algebras, and classify semisimple Hermitian algebras.

There are different ways in which we can construct new Hermitian algebras out
of old ones: Matrix algebras over Hermitian algebras are Hermitian, and complex-
ifications (and quaternionifications) of Hermitian algebras provide new Hermitian
algebras. Given a Hermitian algebra (A, o) we consider the complexification Ac of
A and extend the involution complex linearly to an involution o¢ and complex anti-
linearly to an involution o¢. Then (Ac, o¢) is an Hermitian algebra, but (Ac, oc) is
not, see Sect. 2.

For Hermitian algebras and their complexifications we can refine Theorem 1.1.
For this we make the following definition: we say that a triple of pairwise transverse
isotropic lines is positive, if its Sp, (A, o')-orbits corresponds to an element in A9 by
the identification given in Theorem 1.1.

Theorem 1.2 If (A, o) is Hermitian, then Sp,(A, o) acts transitively on the space of
positive triples of pairwise transverse isotropic lines.

Theorem 1.3 Assume K = R and let (A, o) be a Hermitian algebra or its complexi-
fication. Then the space of isotropic lines is compact.

1.2 Symmetric spaces associated to Sp, (A, 0)

Recall that the symmetric space associated to Sp,(R) is Xsp,®) = Sp,(R)/ U (O,
where U (C) is a maximal compact subgroup. It admits many explicit models. It can
be realized as the space of compatible complex structures on R?, this is the space € :=
{J complex structure on R? | w(J-, -) is an inner product} . We call this the “space of
complex structures” model. To obtain the upper hemisphere model, we complexify
R? to C? and extend the symplectic form w complex linearly to a symplectic from wc.
Similarly we extend a complex structure J complex linearly to C2. Over C now the
complex structure is a diagonalizable endomorphism and we can associate to every
compatible complex structure its +i-eigenspace in C2. This provides an embedding
of € into the space of isotropic lines P(Is(wc)) = P(C?), whose image we denote by
P and call the projective model.

The Poincaré disk model D = {z € C | zz < 1} and the upper half plane model
= {z € C | Im(z) > 0} arise from the projective model 3 naturally by picking
specific affine charts in P(C?). We call the disk model the precompact model. Taking
its closure in C, or the closure of 3 in ]P’((Cz), we obtain a compactification of the
symmetric space, in which the space of (isotropic) lines in R? arises as the boundary.

We show that these constructions can be appropriately generalized to symplec-
tic groups Sp, (A, o) over real Hermitian algebras (A, o). In order to introduce the
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maximal compact subgroup we observe that, given (A, o), the algebra Mat, (A) of
n x n-matrices over A can be endowed with the anti-involution o7, which applies
o to each entry and then the transpose. When (A, o) is a Hermitian algebra, then
(Mat, (A), oT) is Hermitian as well. In that case the subgroup U, (A,0) = {M €
Mat,(A) | o(M)'M = Id,} is compact. This allows us to define the maxi-
mal compact subgroups KSp,(A, o) = Sp,(A, o) NUx(A,0) C Spy(A, o), and
KSpS(Ac, oc) = Spy(Ac, oc) NUz(Ac, o¢) C Spy(Ac, oc). We can thus consider
the symmetric space associated to Sp, (A, o), Xsp,(a,0) = Sp,(A, o)/ KSp, (A, o),
and the symmetric space Xsp,(Ac.oc) = Spa(Ac, oc)/ KSp§(Ac, oc). We develop
different explicit models for the symmetric spaces Xsp,(4,0) and Xsp, (Ac,o¢)-

Theorem 1.4 Let (A, o) be a real Hermitian algebra and (Ac, oc, o¢) its complexi-
fication. Then the symmetric space Xsp,(a,0) = Sp(A, 0)/ KSp,(A, o) admits

(1) a “space of complex structures” model
¢ .= {J complex structure on A> | w(J-, ") is a a-innerproduct} ,

(2) aprojective model 3 := {vAc |_v € Is(we), ioc(v,v) € (Ag)+}, where (A%)+
is the proper convex cone in (Ag),

(3) a precompact model ln)(Ag:C, oc) :={c € AT | 1 —cc e (AL)4),

(4) an upper half-space model 1 = {z € A" | Im(z) € A%}, where A% is the proper

C + +

convex cone in A°.

Furthermore, there are natural maps between these different models. The closure of
the precompact model gives rise to a compactification of Xsp, (A,o) in which the space
of isotropic lines P(Is(w)) appears as the closed Sp,(A, o)-orbit.

For the group Sp,(C) there is a similar construction of explicit models of the
symmetric space, which is less well known. The symplectic group Sp,(C) acts
on ((Cz, ), which we view as the complexification of R2. A quaternionic struc-
ture on C? is an additive map J : C> — C? such that J> = —1Id and
such that J(xa) = J(x)a for all x € C%, a € C. Then Sp,(C) acts natu-
rally on the space of compatible quaternionic structures on C2, which is ¢ :=
{J quaternionic structure on C? | w(J-,-) is a Hermitian inner product}. We call ¢
the “space of quaternionic structures” model of Xsp, (c). Analogously to the above
construction, where we complexified R?> we can now quaternionify C? and extend
the symplectic form w as well as the quaternionic structure. One has to be a bit more
cautious working with the quaternions IH, but one gets a projective model ¢ C P(H?),
aprecompact model D = {x+yi+zj € H| 1 — (x> +y>+z?) > 0} C Hand a upper
half space model 4 = {x + yi +zj e H | x,y,z € R, z > 0} C H. These quater-
nionic models for the three-dimensional hyperbolic space are for example described
in[1, 19].

We prove that an analogous construction can be made for the complexified symplec-
tic groups Sp,(Ac, oc), using quaternionic extensions Ay of the Hermitian algebra
A with two appropriate quaternionic extensions og and o of the anti-involution o. In
particular, we obtain

Theorem 1.5 Let (Ac, oc) be the complexification of a real Hermitian algebra (A, o).
Then the symmetric space Xsp,(Ac,oc) = SP2(Ac, oc)/ KSpS(Ac, oc) admits
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(1) a “space of quaternionic structures” model
¢ := {J quaternionic structure on Aé | w(J-, ) is a oc-inner product},

(2) a projective model 3 C Is(wm),

(3) a precompact model D(Aﬁ‘_ﬁ),al) = {c e Aﬁ'_f | 1 —oi(c)c € (AE)+}, where
(Aﬁ )+ is the proper convex cone in the quaternionification of A,

(4) an upper half-space model | := {z0 + z1j € A%? | zo € A(U:C, 71 € (AQ)+}

Furthermore, there are natural maps between these different models. The closure of
the precompact model gives rise to a compactification of Xsp,(Ac,oc) in which the
space of isotropic lines P(Is(wc)) appears as the closed Sp,(Ac, oc)-orbit.

1.3 Hermitian Lie groups of tube type

As we mentioned before, Hermitian Lie groups of tube type look a lot like groups
of type Sp, over real involutive noncommutative algebras. We illustrate it on the
following example:

We consider the R-algebra A = Mat(n, R) of real n x n-matrices. A natural

anti-involution on A is the transposition that we denote by o. Then by definition,
M € Sp,(A, o) if and only if o (M)QM = MT QM = Q where Q = (_01 (1)> Here
we used the standard identification of Mat(2n, R) and Mat, (Mat(n, R)). That means,
M is a symplectic 2n x 2n-matrix and the group Sp, (A, o) agrees with Sp(2n, R).
With the theory of symplectic groups over noncommutative involutive algebras, we
can make the correspondence between Hermitian Lie groups of tube type and sym-
plectic groups over semisimple Hermitian algebras very precise, at least for classical

Hermitian Lie group of tube type.

Theorem 1.6 The following classical Hermitian Lie groups of tube type can be realized
as symplectic groups over Hermitian algebras:

(1) Sp(2n,R) = Sp,(A, o), where A = Mat(n, R) is the algebra of n x n matrices
over R with involution o : A — A givenby o (r) =r'.

(2) U(n,n) = Spy(A, o), where A = Mat(n, C) is the algebra of n x n matrices
over C with involution o : A — A given by o (r) = P,

(3) SO*(4n) = Sp,(A, o), where A = Mat(n, H)) is the algebra of n x n matrices
over Hwith involutiono : A — A givenbyo : A — Aiso(r) =7l r

I T :
= —rnJ
forr =ry +rajandry, ry € Mat(n, C).

Remark 1.7 The other classical Hermitian Lie group of tube type, SO¢(2, n), cannot
be realized in the same way as Sp, (A, o). However its double cover Spin (2, n)) can
be realized as Sp, over a slightly more complicated object B,,, which is a Jordan subal-
gebra of an appropriate Clifford algebra (A, o). We will discuss this in a forthcoming
article.

The exceptional Hermitian Lie group of tube type cannot be realized as Sp, (A, o),
see Remark 3.27.

There are other Lie groups that can be realized as Sp, (A, o) over involutive algebras
(A, o) that are not Hermitian, see Sect. 3.4.1.
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For these Hermitian Lie groups of tube type, the above models for the symmetric
space Xsp,(4,0) give the well known explicit models of Hermitian symmetric spaces.
The precompact model is the bounded symmetric domain model, and the space of
isotropic lines identifies with the Shilov boundary of the bounded symmetric domain
model.

In view of Theorems 1.6 and 1.4 classical Hermitian symmetric spaces of tube
type can be thought of as hyperbolic planes over noncommutative involutive algebra
(A, 0).

As a Corollary of Theorem 1.6 we can realize the complexifications of Hermitian
Lie groups of tube type Sp,(A, o) as symplectic groups over complexifications of
Hermitian algebras.

Theorem 1.8 The following complex Lie groups can be realized as symplectic groups
over involutive algebras:

(1) Sp(2n, C) = Sp,(Ac, oc), where A = Mat(n, R) is the algebra of n x n matrices
over R with involution o : A — A givenby o (r) =r'.

(2) GL(2n, C) = Sp,y(Ac, oc), where A = Mat(n, C) is the algebra of n x n matrices
over C with involution o : A — A givenby o (r) =7!.

(3) O(4n, C) = Sp,(Ac, oc), where A = Mat(n, H) is the algebra of n x n matrices
over Hwith involutiono : A — A givenbyo : A — Aiso(r) =7l r

I T :
=ry—rnJ
forr =ry +rajandry, ry € Mat(n, C).

In particular, Theorem 1.5 applies and we obtain explicit new realizations of models
for the symmetric spaces associated to Sp(2n, C), GL(2n, C), and O(4n, C). We
illustrate here the upper half-space model for Sp(2n, C) and refer the reader to Sect. 7
for an explicit description of all the models for Sp(2n, C), GL(2n, C), and O(4n, C).

For Sp(2n, C), we consider again A = Mat(n, R) with the anti-involution o given
by transposition. Then Ac = Mat(n, C), oc is the transposition and Sp,(Ac, oc) =
Sp(2n, C). The upper half-space model of the symmetric space of Sp, (Ac, oc) is then
(see Theorem 1.5(4))

U={z1+z22jlz1 € AT, 2 € (A%CM}
={z1 +22j | z1 € Sym(n, C), z5 € Herm™ (n, C)}.

Structure of the paper: In Sect. 2 we discuss algebras A with anti-involution, and
introduce the notion of Hermitian algebra. A more general notion of pre-Hermitian
algebras and a classification of Hermitian algebras is given in Appendix A. In Sect. 3
we introduce the symplectic groups Sp, (A, o) over noncommutative rings and give
examples of classical Lie groups that are realized as Sp, (A, o). In Sect. 4 we investigate
the action of Sp, (A, o) on the space of isotropic lines. We construct the various models
of the symmetric space Xsp,(a,0) in Sect. 5, and of the symmetric space Xsp,(A¢,oc)
in Sect. 6. In Sect. 7 we spell this construction out for the complexifications of the
Hermitian Lie groups of tube type, giving explicit models for the symmetric spaces
of Sp(2n, C), GL(2n, C), and O(4n, C).
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2 Algebras with anti-involution

In this section we consider algebras with anti-involutions and introduce basic notions
which play an important role throughout the paper.

2.1 Main definitions

Let K be afield and A a unital associative possibly noncommutative finite-dimensional
K-algebra. If K is a topological field, A has a well defined topology.

Definition 2.1 An anti-involution on A is a K-linear map o : A — A such that

e o(ab) = o(b)o(a);
e o2 =1d.

An involutive K-algebra is a pair (A, o), where A is a K-algebra and o is an anti-
involution on A.

Remark 2.2 Sometimes in the literature the maps that satisfy Definition 2.1 are called
just involutions. We add the prefix “anti” in order to emphasise that they exchange the
factors.

Remark 2.3 Notice, since the algebra A is unital, we always have the canonical copy
of Kiin A, namely K- 1 where 1 is the unit of A. We will always identify K - 1 with K.
Moreover, since o is linear, forall k € K, o (k- 1) = ko (1) =k - 1, i.e. o preserves
K-1.

Definition 2.4 An element a € A is called o-normal if o (a)a = ao (a). An element
a € Aiscalledo-symmetricifo(a) = a. Anelementa € Aiscalled o-anti-symmetric
if 0 (a) = —a. We denote

A% :=Fixy(c)={a € A|o(a) =a)},
A7? :=Fixp(—o) ={a € A | o(a) = —a}.

Example 2.5 Typical examples of involutive algebras are given by matrix algebras: If
K is a field, then the space of K-valued n x n-matrices Mat(n, K) with anti-involution
given by the transposition is an involutive algebra.

If additionally K admits an involution §: K — K, then Mat(n, K) with the anti-
involution § o o is again an example of an involutive K-algebra.

Semisimple involutive finite-dimensional algebras over perfect fields with the addi-
tional assumption A° = K can be classified. To state the classification, we need the
following well-known definitions:

Definition 2.6 A field K is called perfect if every irreducible polynomial over K has
distinct roots in its splitting field.

Remark 2.7 Notice that every field of characteristic zero is perfect.
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Definition 2.8 A non-zero algebra is called simple if it has no two-sided ideal besides
the zero ideal and itself. A finite-dimensional algebra is called semisimple if it is
isomorphic to a product of simple algebras.

Theorem 2.9 Let K be a perfect field with char(K) # 2 and (A, o) be a semisimple
finite-dimensional involutive algebra over K such that A° = K. Then either A is a
division algebra over K of dimension 1, 2 or 4, or A = K@ K and the anti-involution
exchanges the two summands.

A proof of this statement will be given in Proposition A.31 and Theorem A.32.
We denote by A* the group of all invertible elements of A. If V. C A is a vector
subspace, we denote

V¥ =A*NV,

the set of invertible elements in V. We consider the following map 6, that will play
the role of a norm on A

0:A— A°
at+— o(a)a

Definition 2.10 The closed subgroup
Uwno)y={a e A" |0() =1}

of A* is called the unitary group of A. The Lie algebra of U4 ) agrees with A77.

Definition 2.11 Let (A, o) be an algebra with an anti-involution. We define the set of
o -positive elements by

k
o . 2
AL = { Zai
i=1
and the set of o-non-negative elements by
k
o ._ 2
>0 = { >4
i=1

Remark 2.12 1f (A, o) is an algebra over an ordered field K, then A is the topological
closure of A9 . This follows from Corollary 2.30. B

a; € (A%)*, kGN},

aieA",keN}.

We will now give the definition of a Hermitian algebra that will be a key notion in
this paper. Before this, we remind the well-known definition of a real closed field. A
real closed field is an ordered field K which is of index two in its algebraic closures.
Equivalently, it is an ordered field K in which every positive element of K is a square
and every odd degree polynomial has at least one zero.
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Definition 2.13 Let K be a real closed field. A unital associative K-algebra with an
anti-involution (A, o) is called Hermitian if for all x, y € A%, x> + y> = 0 implies
x=y=0.

Let K be a real closed field. Slightly abusing our notation, we denote the algebraic
closure of K by K¢. Since K is real closed, K¢ = K[i] where i is a square root of
—1 called also the imaginary unit of Kc. The field K¢ is called the complexification
of K. The involution *: K¢ — K¢ defined as 1 = 1,i = —i is called the complex
conjugation. With this (anti-)involution, K¢ becomes a Hermitian algebra over K of
dimension 2. If K = R then as usual we denote C = R¢.

For a real closed field K there exist a generalized quaternion skew-field Ky defined
by the following presentation:

Kir = {x0 + x1i +x2j + x3k | i = j> = —1, ij = —ji =k}.

If K = R, then Ry is the classical quaternion skew-field that we will denote as usual
by H. We call Ky the quaternionic extension of K. With the anti-involution ~ defined
asi = —i, j = —j, k = —k and called the quaternionic conjugation, Ky becomes a
Hermitian algebra over K of dimension 4. The elements i, j, k are called imaginary
units of Kp.

Also the generalized octonionic algebra Kg can be defined over any real closed field
K. This is the 8-dimendional non-associative noncommutative algebra that is generated
(asaK-vector space) by theunit 1 € Kandsevenimaginaryunitsi, j, k, E, I, J, K.
The multiplication rule of the imaginary units is the same as in the classical octonionic
O algebra over R.

Remark 2.14 Although in the notation of complexification and quaternionification we
use symbols C, H and O, we do not assume that C is a subfield of K¢, H is a
subalgebra of Ky and O is a subalgebra of Kg. In the Appendix A, we consider other
division algebras over fields (not necessarily over real closed fields). In the notation
of Appendix A, Ky =H_; 1 and Kg = O_1 _.

Example 2.15 The main examples of real closed fields are R and the subfield of alge-
braic reals. An example of real closed field not contained into R is given by the field
of Puiseux series with real coefficients. Another example is the field of hyperreals.
The field Q is not real closed, since for example 2 is not a square.

Remark 2.16 Every real closed field has characteristic zero and contains the field of
algebraic reals as a subfield.

For real closed fields the following theorem holds:

Theorem 2.17 (Generalized Frobenius Theorem) Let K be a real closed field. Every
associative division algebra over K is isomorphic to K, K¢ or Ky. The only non-
associative noncommutative division algebra over K is Kg.

In case K = R this theorem is the classical Frobenius theorem. The general version
of this theorem follows from the classical one using the Tarski—Seidenberg transfer
principle (see [7, Proposition 5.2.3]).
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Proposition 2.18 A subalgebra of a Hermitian algebra that is closed under the anti-
involution is Hermitian.

Example 2.19 The following matrix algebras provide examples of Hermitian R-
algebras: Mat(n, R) with the transposition and Mat(n, C) with the transposition
composed with the complex conjugation.

Semisimple finite-dimensional algebras over real closed fields with the additional
property A° = K are all Hermitian and can be classified as follows:

Corollary 2.20 Let (A, o) be a semisimple finite-dimensional algebra over K with
A% =K. Then one of the following cases holds:

(1) A =K, the anti-involution o acts trivially;

(2) A =K&K the anti-involution o permutes copies of K, i.e. o (x,y) = (v, x);
(3) A =K, the anti-involution o acts by complex conjugation;

(4) A = Ky, the anti-involution o acts by quaternionic conjugation.

In every case (A, o) is Hermitian. The bilinear form

B: AT x A7 — K
(a,a’y + —ad —da

is an inner product on A=°.

This follows from the Theorems 2.9 and 2.17.

Remark 2.21 The property to be Hermitian can also be defined in the same way for
algebras with an anti-involution over any field. In this paper, we are discussing only
Hermitian algebras over real closed fields. In the Appendix A, a larger class of Her-
mitian and pre-Hermitian rings is considered and classified.

Remark 2.22 Notice, if K is a real closed field and (A, o) is an involutive algebra over
K, then the addition and the multiplication in A as well as the anti-involution o are
semi-algebraic maps and the spaces A, A%, A7, A, A;O, U(a,+) are semi-algebraic
sets.

Remark 2.23 We will see in Sect. 2.3 that if K is a real closed field and (A, o) is a
Hermitian algebra over KK, then AY = {a® | a € (A°)*} and A‘;O ={a?|a e A%}
are proper convex cones in A?.

2.2 Some properties

Proposition 2.24 Let K be a field and A be a unital associative K-algebra of finite
dimension n over K. Then A is isomorphic to a subalgebra of Mat(n, K).

Proof For every x € A, consider the linear map Ly : A — A defined by
Ly(y) = xy.
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Consider the map
A3 x — L, € Mat(n, K).

This is an injective K-algebra homomorphism (there is no kernel because A is unital).
O

Definition 2.25 Let K be a field, A be a unital associative finite dimensional K-algebra
and a € A. An element A € K is called eigenvalue of a if a — A - 1 is not invertible.

Remark 2.26 Notice that this definition of an eigenvalue works for non-associative
algebras as well.

Proposition 2.27 Let K be a field and A be a unital associative finite dimensional
K-algebra. Then a € A is not invertible if and only if a is a zero divisor in K[a].

Proof Since A is of finite dimension over K, for every a € A there exists k > 0 such
that set {1,a,a?, ...,a*" 1} is linearly independent over K and {1, a, a? aky
is linearly dependent over K. This means that there exists a non-trivial polynomlal
p € K[X] such that deg(p) = k and p(a) = 0. Without lost of generality, assume
p= Zf:o ciX',cieKandcp = 1.

First we note that if a is non-invertible, then p(0) = ¢¢p = 0. Indeed, assume
p(0) = co € K*. Then

k k-1
pl@)=>y ca = (Z ciai‘1> a+co=0.
i=0 i=0

This means that a is invertible and a~' = —Cy (Z 0 cia'

Now, since ¢g = 0, we write p(X) = ¢g(X)X where ¢ e K[X] is a non-trivial
polynomial of degree k — 1. Hence, g(a) # 0 and we obtain g(a)a = 0. That means,
a is a zero divisor in K[a]. O

Proposition 2.28 Let K be a field and A be a unital associative finite dimensional
K-algebra. Let a € A and p € K[X] such that p(a) = 0, then p(X) = 0 for all
eigenvalues ) of a. In particular, there are only finitely many eigenvalues of a.

Proof Let X\ be an eigenvalue of a. Therefore, by previous Proposition, there exists
0 # b € Kla] with (a — A - 1)b = 0. In particular, ab = Ab and by induction
a'b =a'""(ab) = a'~'(xb) = A'b foralli € N.

If p € K[X] be such that p(a) = 0, then p(a)b = 0. Since a’b = Albforalli € N,
we obtain 0 = p(a)b = p(A)b. But p(L) € K and b # 0, therefore, p(A) = 0. O

Definition 2.29 We will say that a topological field has a non-trivial topology if its
topology is not discrete nor indiscrete.

The condition that the topology on a field is non-trivial is remarkably strong. Such
topologies are automatically 7y, because the intersection of all the neighborhoods of 0

W Birkhauser



Symplectic groups over noncommutative algebras Page 150f 119 82

must be an ideal, hence it is {0}. This implies that the topology is Hausdorff, from the
properties of topological groups. Fields with non-trivial topologies must be infinite: in
fact, for finite KK, every one-point set is closed means that every one-point set is open
as complement of finite-point (closed) set, i.e. the topology is discrete. An important
example is an ordered field endowed with the order topology.

Proposition 2.30 Let K be a topological field with a non-trivial topology. Let A be a
unital associative finite-dimensional K-algebra, and let V be a vector subspace of A
that contains at least one invertible element. Then V* is an open dense subset of V.

Proof Notice that x € A isinvertible in A if and only if the linear map L, is surjective,
which holds if and only if L, is invertible in Mat(n, K). Since 0 € K is closed, the
set of all invertible elements GL (1, K) = Mat(n, K) \ det ™' (0) ¢ Mat(n, K) is open.
Hence, the intersection of GL(n, K) with V is open in V as well.

To see the density, consider an invertible element # € V. The set u~! - V is again
a vector subspace of A and contains the unit 1. It suffices to show that density holds
foru=' - V.If x € u~! . V is not invertible, consider y. = x + € - 1. By the previous
proposition, there are only finitely many values of € such that y, is not invertible,
namely the opposites of eigenvalues of x.

Since K is infinite and non-discrete with closed points, there exists a (maybe
punctured) neighborhood U of 0 € K that does not contain eigenvalues of x. Now
every open neighborhood of x intersects non-trivially the set {x +€ -1 | € € U}.
To see this, we choose a basis (ej,...,e,) of u=! -V containing 1 = ej. Then
by definition of the product topology for every neighborhood W of x there exist a
neighborhood W’ of 0 € K such that W contains the following open neighborhood
[x+Xrer+---+Ar4e, | A € W) SinceUNW £ 3, WN{x+e-1]|ecU} #02.
This shows that V> is dense in V. O

Corollary 2.31 For algebras (A, o) satisfying Corollary 2.30, A* is open and dense
in A, (A%)* is open and dense in A°.

When K is an ordered field, we will assume that it is endowed with the order
topology, which is always non-trivial. Recall that a subset C C V of a K-vector space
is a cone if it is stable under multiplication by a strictly positive scalar. A cone is
convex if it is stable by sums of its elements. If C is a convex cone, its closure C and
its interior C are still convex cones. The set of the opposites of the elements of C,
denoted by —C, is still a convex cone. A convex cone C is proper if

CcnN—C ={0}.

If C is a cone in some algebra over K, then we denote by C* the subset of all invertible
elements of C.
Similarly to Proposition 2.30 can be proven:

Proposition 2.32 Let K be an ordered field. Let A be a unital associative finite-
dimensional K-algebra, and let C be a convex cone of A that contains at least one
invertible element. Then C* is an open dense subcone of C.
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Remark 2.33 As we have seen in Remark 2.23, for Hermitian algebras, A9 and A‘;O
are proper convex cones in A?. Proposition 2.32 implies that A9 is open and dense in
AZ,.

2.3 Jordan algebras and spectral theorem

In this section we recall the definitions of a Jordan algebra and formally real Jordan
algebra and prove some properties of formally real Jordan algebra that we will need
later. We also show how Jordan algebras arise from associative algebras.

Definition 2.34 Let (V, o) be an possibly non-associative unital algebra over some
field K. We denote by 1 the unit of V. (V, o) said to be a Jordan algebra if for all
x,yeV

(1) xoy=youx;

(2) (xoy)o(xox)=xo(yo(xoux)) (Jordan identity).

Every Jordan algebra is power associative, i.e. K[x] is associative for all x € V (see
[9, Proposition II.1.2]). Therefore, instead of x o --- o x (with n-factors) forx € V,
we can just write x”.

A Jordan algebra (V, o) over a real closed field is called formally real if for all
x,y €V, x>+ y?> =0 implies x, y = 0.

An element x € V is called invertible if there exists y € K[x] such thatx oy = 1.
Since K[x] is associative, y € K[x] is unique. The element y is called the inverse and
is denoted by y = x 1.

The following is immediate:

Proposition 2.35 Let (A, o) be a finite dimensional algebra with anti-involution, then
the following hold:

e The algebra (A°, o) is a Jordan algebra where

e If (A, 0) is Hermitian, the Jordan algebra (A°, o) is formally real.

Jordan algebras that arise form associative algebras as in 2.35 are called special
Jordan algebras. All other Jordan algebras are called exceptional Jordan algebras.

In this section we establish some properties of formally real Jordan algebras. We
do not assume that they are necessarily special.

Let (V, o) be a formally real Jordan algebra over a real closed field K. We use the
following notation:

Vi = {Xn:aiz

i=1

n
Vz() = :Za?

i=1

a[eVX,neN},

aieV,neN}.
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These are clearly proper convex cones in V.

Definition 2.36 An element ¢ € V is called an idempotent if ¢*> = c.

o Two idempotents ¢, ¢’ € V are called orthogonal if c o ¢’ = 0.
e A tuple (cy,...,cr) of pairwise orthogonal idempotents is called a complete
orthogonal system of idempotents if c; + --- + ¢ = 1.

Remark 2.37 Note that every idempotent ¢ satisfies ¢ € Vxo. Moreover, if ¢ # 1, then
ceVso\ Vi

Theorem 2.38 (Spectral theorem, first version) Let V be a formally real Jordan algebra
over areal closedfield K. For everyb € V, there exist aunique k € N, unique elements
A, - .., Ax € K all distinct, and a unique complete system of orthogonal idempotents
Cl,...,ck € K[b] € V such that

k
b= Z)\ici.
i=1

We call this the spectral decomposition of b. Moreover, K[b] = K]cy, ..., cx].

For a proof of this theorem for real Jordan algebras see [9, Theorem IIL.1.1]. A
proof for general real closed fields is identical. The assertion K[b] = Klcy, ..., ck]
follows from the fact that K[b] C K]cq, ..., cx] € K[b].

We collect some direct consequences of Theorem 2.38.

Corollary 2.39 Let (V, o) be a formally real Jordan algebra and c1,cy € V be two
orthogonal idempotents. There exists an a € V such that c1,cy € Kla]. If V = A°
for an associative Hermitian algebra (A, o), then cicy; = 0.

Proof We considera := c¢|—c;. Thisis the spectral decomposition of a. By the spectral
theorem, cq, ¢y € K[a]. Let V. = A? for an Hermitian algebra. Since ¢y, c2 € K[a],
they commute with respect to the product of A. Therefore, 0 = c¢| o ¢z = cjc3. O

Corollary 2.40 The set of all invertible elements V> of V consists of elements such
that in the spectral decomposition we have A; # 0 for alli. If all A; # 0, then

k -
<Z)~,’C,’) :Z)‘i_lci'
i=1 i=1

Proof Let b = Zle Aici be the spectral decomposition of b € V. Assume first that
Ai #O0foralli € {1,...,k}. We take b’ = Zle ){]ci. Because b’ € K|cq, ..., ck]
andbo b’ = 1, we obtain b’ = b1,

Assume now without loss of generality that A; = 0. We take any element ' =
¥ Mei € Kbl = Klet, ..., cx). Then b o b’ = Y5, aidlc; # 1 forany b €
K[b]. Therefore, b is not invertible. O
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Corollary 2.41 For b € V>o, we have A1, ..., Ar > 0. If b € V., we have moreover,
Ay ...y A > 0. Moreover, V=o = (@®>|aecV}), Vy={a*|aecV*).

Proof By [13, Lemma 2.9.4] a sum of squares in a formally real Jordan algebra is
always a square. All eigenvalues of a square are non-negative.

Let now a € V*, by the previous corollary, all the eigenvalues of a are non-zero.
Therefore, all the eigenvalues of a? are positive. Let A,,i, (x) be the minimal eigenvalue
of x € V. Then Amin(a?) > 0. Moreover, a®> = Amin(a®) - 1 +a’ fora’ € V. All the
eigenvalues of a’ are non-negative. Therefore, ' = b? for an element b € V.

We take now a sum y -_, ai2 € V; withg; € V*. Then:

n n n
Y a? = hmina}) 1+ bR
i=1 i=1 i=1

Since Z?:l bl.2 = b2 for some b € V, we obtain
n n
Y=Y @) 145 =
i=1 i=1

with Apin(X) > D7 Ain (aiz) > 0. In particular, x is a square of an invertible
element of V. ]

Corollary 2.42 For every (continuous/smooth) function f: K — K, the (continu-
ous/smooth) map

f:V—>V

can be defined: if

k
b= Z)\,’Cl’,
i=l1

then

k
fb):=>" fOiei.

i=1

This map is well defined because the spectral decomposition is unique. Analogously,
for any function f: Ksog - Kor f: Ky — K, f: V=0 — V resp. f: Vi — Vcan
be defined.

In particular; for every b € Vs, the element b' € Vs fort € Q4 is well-defined
(If K = R it is even well-defined for all t € R). This definition is compatible with
integer powers of elements.
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Proposition 2.43 e The space V. is semi-algebraically contractible. The set {1} is a
semi-algebraic deformation retract of V. In particular, V4 is semi-algebraically
connected.

e The space V= is semi-algebraically contractible. The set {1} is a semi-algebraic
deformation retract of V>q. In particular, V>q is semi-algebraically connected.

Proof We consider the following continuous semi-algebraic map: H(¢t,a) =t -a +
(1—1)-1wheret € [0,1] ={s e K| 0<s <1} C K, a € V4. Since,
H(t,a) = Zle(kit + (1 — 1))c; where (¢;) is a complete system of orthogonal
idempotents in the spectral decomposition of a. Since all A; are positive, the convex
combination A;t + (1 —¢) is positive for all # € [0, 1]. Therefore, H (¢, a) € V4 forall
t €[0,1],a € V4. Moreover, H(l,a) = a and H(0,a) = 1, i.e. H is a contraction
and {1} is a semi-algebraic deformation retract of V..

The same contraction works also for V. O

Corollary 2.44 Let K = R. The space V4 is (non-semi-algebraically) homeomorphic
to V. In particular, V4 is open in V and contractible, and {1} C V4 is a deformation
retract of V.

Proof The map f(¢) = log(r) gives a homeomorphism between V. and V. The rest
follows from 2.43. O

We now state the second version of the spectral theorem. For this we need to give
some additional definitions:

Definition 2.45 An idempotent O £ ¢ € V is called primitive if it cannot be written
as a sum of two orthogonal non-zero idempotents.

e A complete orthogonal system of primitive idempotents (cy, ..., cx) is called a
Jordan frame.

e The maximal number of elements in a Jordan frame is called the rank of a Jordan
algebra.

Theorem 2.46 (Spectral theorem, second version) Let V be a formally real Jor-
dan algebra over a real closed field K. Suppose that V has rank n. For every
b € V there exist a Jordan frame (eq, ..., e,) and a unique n-tuple of elements

r1(D), ..., Ay (b)) € K" such that A (b) > --- > A, (b) and

b= Zki(b)ei.
i=1

The elements A (D), ..., Ay (b) € K (with their multiplicities) are called the eigen-
values of b are uniquely determined by b. In particular, they do not depend (up to
permutations) on the Jordan frame ey, ..., e, € V.

For a proof of this theorem for real Jordan algebras see [9, Theorem III.1.2]. The
proof for a general real closed field is identical.
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Remark 2.47 A Jordan frame ej,...,e, € V associated to the element b € V by
Theorem 2.46 is in general not unique and elements ey, ..., e, ¢ K[b], in contrast to
the complete system of orthogonal idempotents from Theorem 2.38.

Remark 2.48 In Definition 2.25 we already defined eigenvalues for elements of an
associative algebras. This definition works also for non-associative algebras (see
Remark 2.26). If V is a formally real Jordan algebra, then the eigenvalues defined
by the spectral theorem agree with the eigenvalues defined in Definition 2.25.

Definition 2.49 The signature of an element b € V is a pair (p, ¢) with p, ¢ € NU{0}
such that b has p positive eigenvalues and g negative eigenvalues in the spectral
decomposition defined in 2.46.

Remark 2.50 Notice that for an element b of signature (p, ¢), p + g < n, moreover,
p + g = n if and only if b is invertible.

Definition 2.51 Letb € V and A1 (b), ..., A, () are all its eigenvalues with multiplic-
ities. We define the eigenvalue map:

AV K"
b — (A (D), ..., (D)),

and the trace and the determinant maps:

tr(b) := Y A;(b), det(b) := [ [ 1i(b).

i=1 i=1

Remark 2.52 Since the eigenvalues defined by the spectral theorem and eigenvalues
defined in 2.25 agree, the eigenvalue map is semi-algebraic. The eigenvalue map is
continuous. For a proof when K = R see [3, Corollary 24]. For a general real closed
field the proof is identical.

Corollary 2.53 The function

B:VxV — K
(b1, b2) > tr (by 0 b2)

is an inner product on 'V, where V is intended as a K-vector space.

Corollary 2.54 e The set V. is an open and closed proper convex cone in V. In
particular, V4 is a semi-algebraic connected component of V.
e The set Vx> is a closed proper convex cone in V.

Proof We already know that V. and V¢ are proper convex cones in V* and in V
respectively.

The set Vy = A_I(K’i) is open and closed in V* = A~!((K \ {0})"). In par-
ticular, V, is a semi-algebraic connected component of V because by 2.43 V. is
semi-algebraically connected.

The set Voo = A7 (K",) is closed in V. O

W Birkhauser



Symplectic groups over noncommutative algebras Page210f119 82

2.4 Classification of simple formally real Jordan algebras

In this section, we recall the well-known classification of simple formally real Jordan
algebras over R and generalize it to all real closed fields.

Theorem 2.55 Every simple formally real Jordan algebra over a real closed field K
is isomorphic to one of the following Jordan algebras:

(1) Symmetric real matrices (Sym(n, K), o) where a o b = ‘% for a,b €
Sym(n, K);
(2) Hermitian complex matrices (Herm(n, K¢), o) where a o b = %for a,b e
Herm(n, K¢);
ermitian quaternionic matrices (Herm(n, Ky), o) where a o b = 524 for
(3) Hermiti joni ices (Herm(n, Kp), o) wh b = abiba
a,b € Herm(n, Kg);
(4) (By, o) where B, = Spang (1, x1, ..., x,) withlox; = x;, xjoxj = 0fori # j,
xiox;i=1foralli,je{l,...,n},
ermitian octonionic 3 x 3 matrices (Herm(3, Kg), o) where a o b = 423°¢ for
(5) Hermiti jonic 3 x 3 ices (Herm(3, Kg), o) wh b = abtba
a,b € Herm(3, Kqp).

In case K = R this theorem agrees with the classification of formally real Jordan
algebras over R that is proven in [9, 13]. The general version of this classification
follows from the classification in case K = R using the Tarski—Seidenberg transfer
principle (see [7, Proposition 5.2.3]).

The Jordan algebras (1)—(3) from 2.55 can be seen as A? for certain simple algebras
(A, 0). Let K be a real closed field.

(1) Symmetric real matrices: A = Mat(n, K), o () :=r' is an algebra with an anti-
involution. Then A° = Sym(n, K) space of all symmetric matrices. The algebra
(A, o) is Hermitian with AT = Sym™ (n, K) real symmetric positive definite
matrices.

(2) Hermitian complex matrices: A = Mat(n, K¢),5 (r) := 7! is aHermitian algebra
with A° = Herm(n, K¢) complex Hermitian matrices and A% = Herm™ (n, K¢)
complex Hermitian positive definite matrices.

(3) Hermitian quaternionic matrices: A = Mat(n, Kg), 6 (r) := r', is a Hermitian
algebra with A° = Herm(n, Ky) quaternionic Hermitian matrices and A(j_ =
Herm™ (n, Kg) quaternionic Hermitian positive definite matrices.

There is another anti-involution on A = Mat(n, Ky), namely o1(r) := o (r1) +
o(ry)j where r = ry +rpj and r1, ry € Mat(n, Kc). This algebra (A, o1) is not
Hermitian.

T

T

Fact2.56 ([13, Corollary 2.8.5]) The Jordan algebra (Herm (3, Kg), o) is exceptional.
This means that there is no associative real algebra A that contains Herm(3, Kg) as
a Jordan subalgebra.

Remark 2.57 The Jordan algebra (B, o) can be embedded as a Jordan subalgebra
into the even Clifford algebra Clgy, (1, n) for some appropriate anti-involution o, but
CI(1, n)? is strictly bigger than B,, forn > 2.Inthe case n = 2, CI(1, 2) is isomorphic
to Mat(2, K) as an associative algebra, and B> is isomorphic to Sym(2, n) as a Jordan
algebra.
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2.5 Positivity of the norm
Let K be a real closed field and (A, o) be a Hermitian semisimple algebra over K.
The goal of this subsection is to show that 6(a) = o (a)a € A;O foralla € A. To do

it, first, we prove some technical propositions.

Proposition 2.58 Let (A, o) be a Hermitian semisimple algebra, then —a® € AL for
everya € A7°.
Proof We prove it by induction on the rank of A. If its rank is one, then the statement
follows from the Corollary 2.20.

Let now rank of A be equal n > 1 and we assume that for every Hermitian semisim-

ple algebra A’ of rank smaller then n, the Proposition holds. Take a € A~ then
a*> € A°. We consider a spectral decomposition:

n
a’ = Z rie;
i=1

where (e;)?_, is a Jordan frame. We denote

n—1

Then E +e =1,eE = Ee = 0, and algebras (EAE, o) and (eAe, o) are Hermitian
semisimple subalgebras of A of rank strictly smaller then rank of A. Therefore,

a® =(EaE + Eae + eaE + eae)2 = EaEaFE + eaeae + (eaEae + EaeaFE)
+ (Eaeae + EaEae) + (eaeaE + eaEaFE).

Since EaEaE = (EaE)?and EaE € (EAE)~°,wehave —EaEaE € (EAE);0 c
A;O. The same holds for —eaeae. Further,

—(eaEae + EaeaE) = (eaE — Eae)* € A%,
because ea E — Eae € A°. Finally,
Eaeae + EaEae = Ea(E + e)ae = Ea*e =0

beacsue of the spectral decomposition of a? and ¢E = Ee = 0. The same holds for
eaeaFE + eaEaE. O

Proposition 2.59 Let (A, o) be a Hermitian semisimple algebra and x € A satisfy the
property o (x)x = 0, then x = 0.
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Proof We denote: Ag := {x € A | o(x)x = 0}. First, note that o (x)x = 0 if
and only if xo (x) = 0. Indeed, let o (x)x = 0, then xo(x) € A° and (xa(x))2 =
xo (x)xo (x) = 0. Therefore, since A is Hermitian, xo (x) = 0.

Further, write x = x* + x% where x* € A%, x% € A~?. Then

o(x)x = () — D2 + x*x4 — x*%* =0 = xo(x) = (x*)?

_(xa)Z — xSx% 4 x9x5,

Therefore, x*x¢ — x“x% = 0 and ()cS)2 — (x“)2 = 0. Since (xs)z, —(x”)2 € AZ, and
AZ, is a proper convex cone, x* = 0 and (x*)? = 0. Therefore 1 4+ x* = 1 + x is
invertible and (1 +x)~! =1 — x.

Let r € A, consider y = xr. Then o (y)y = o(r)o(x)xr = 0,1ie. y € Ap.
Further, take ' € A and consider z = r’y, then zo (z) = 0. Therefore, as we have
seen, 0(z)z = 0 and z € Ag. That means, for every r,r’ € A, 1 +r'xr € A™, i.e.
x € J(A) where J(A) is the Jacobson radical of A (see Definition A.1). Because A
is semisimple, J(A) = {0}. O

Let K be a real closed field. As before we denote by K¢ the algebraic closure of K.

Proposition 2.60 Let (A, o) be a Hermitian semisimple algebra, then the complexified
algebra (Ac, oc), where Ac = A @k K¢ and o¢ the complex anti-linear extension
of o (ie.o(x +iy) =o(x) —io(y) forx,y € A), is semisimple and Hermitian as
an involutive algebra over K.

Proof The algebra (Ac, o¢) is clearly unital and associative. We check now that, if
x2+y2=0,thenx=y=OeAg‘C.

For x € A%C we write x = x1 + ixp, X1, X2 € A. Since oc(x) = o(x1) —io(x2),
x1 € A%, xp € A79. Further,

Xy =xf oyt —x3 —yi Hi(xiy2 + yixa +x2y1 + yax1) =0.
Since xlz, y12, —x%, —y22 IS AZO, we have x12 = y% = —x% = —y22 = 0. Therefore, by
Proposition 2.59, x; = x; = y; = y» =0,ie.x =y =0.

Assume now that Ac is not semisimple, i.e. the Jacobson radical J(Ac) of Ac is
non-trivial. Let 0 # x € J(Ac), then by A.9, o¢c(x) = —x and x% = 0. Therefore,
oc(ix) = ix,le.ix € Agc and (ix)%2 = 0. This contradicts to the property to be
Hermitian for (Ac, o¢). O

We remind that a semi-algebraic path in A is a continuous semi-algebraic map
y: [0, 1] - A where [0, 1] :={s € K| 0 < s < 1}. A semi-algebraic subset X C A
is semi-algebraically connected if there exists a semi-algebraic path between every
two points of X. This is equivalent to say that X is not a disjoint union of two non-empty
semi-algebraic open subsets of X (for more details see [7, Sections 2.4,2.5]).

Proposition 2.61 Let Y be a finite dimensional Kc-algebra, V. C Y be a K¢-vector
subspace. Then V* is semi-algebraically connected.
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Proof If V> = @ then V> is semi-algebraically connected.

Assume now that 1 € V> # @. As we have seen in the Proposition 2.24, Y can
be embedded as a subalgebra into Mat(r, K¢) for some r € N. We identify Y as a
subalgebra of Mat(r, Kc).

Leta € V> C GL(n, K¢). We consider

Sﬂlg(c ={x+iyeKc|x,yek, x2+y2=1}.

Notice, that S]Il§c is a semi-algebraically connected set. In particular, it has infinitely
many points. Since a has only finitely many eigenvalues, and 0O is not one of them,
there is a point z € S]%(C C Kc such that the K-line {tz | ¢+ € K} in K¢ through
the origin containing z does not intersect any of the eigenvalues of a. Now, consider
the K-path f(t) = at +z(1 —)Id,t € [0, 1] ={s e K|0<s <1} CK. It
lies completely in V because it is a C-vector space. This has determinant O if and
only if z(# — 1) is an eigenvalue of at, which happens if and only if z(1 — ¢)/¢ is an
eigenvalue of a (this does not work when ¢ = 0, but then it is clear that the determinant
is non-zero). By construction, it is not the case for any ¢ € [0, 1] C K, so this defines
a path form a to z Id. Now, there is a path in K¢ not passing through 0 from z to 1,
and, since {zId | z € S]I]<@} C V*, this gives rise to a semi-algebraic path in A from
z1d to Id, and so concatenating these two paths, we get a path from a to Id that lies in
V>, showing that V* is semi-algebraically connected.

Finally, if 1 ¢ V> but there exists v € V*, then V* is semi-algebraically con-
nected if and only if  vy* = vl (VX)is semi-algebraically connected. Moreover,
v~V is also a K¢-vector space and 1 € W 'V)*.So (v1V)* is semi-algebraically
connected and, therefore, V* is semi-algebraically connected as well. O

Now we are ready to prove the following

Theorem 2.62 Let (A, o) be a Hermitian semisimple algebra, then o (a)a € A;Ofor
all a € A. In particular, AT = 6(A™) and Ago =0(A).

Proof First, we embed (A, o) into its complexification (Ac, 6¢) that is Hermitian
as well. Let a € A* C A{. Since A is semi-algebraically connected, we take a
semi-algebraic path y: [0, 1] — A(E such that ¥ (0) = a, y(1) = 1 € A. The eigen-
value map: A(o (y(¢))y(¢)) takes values in the semi-algebraic connected component
of (1,..., 1) e (K\ {0})", i.e. in K. In particular, A(0 (a)a) = A(o (y(0))y(0)) is
positive meaning thata € A% C (AZ")4.

Since A is the closure of A%, the eigenvalue map takes values in the closure of the
connected component of (1,...,1) € (K\ {0})", i.e. all eigenvalues of o (a)a are
non-negative fora € A. O

Remark 2.63 We conjecture that the Theorem 2.62 holds also for non-semisimple
Hermitian algebras.

Definition 2.64 Let V be a formally real Jordan algebra over a real closed field K and
V. be the cone of positive elements of V. The group of all linear transformations of
V (as K-vector space) which preserve V. is called structure group of V and denoted
by G(V).

W Birkhauser



Symplectic groups over noncommutative algebras Page250f119 82

Corollary 2.65 The group A* acts on A° preserving AS. in the following way:

YA x A% > A°
(a,b) — o(a)ba.

In other words, ¥ (A™) is a subgroup of G(A?). Moreover, the restriction of this action
to A9 is transitive.

2.6 Polar decomposition

Let (A, o) to be a Hermitian algebra. From now on, we always assume the algebra A
to be semisimple.

Theorem 2.66 (Polar decomposition, first version) The map

pol: Ua,0) X Ai — A%
(u, b) — ub

is a semi-algebraic homeomorphism. In particular, for every g € A* there exist unique
be AS andu € Ua,q) such that g = ub.

Proof The map pol is well-defined because A9 € A*. First, we prove the surjectivity.
Take g € A, then 0(g)g € AT by Proposition 2.62. Take b := (a(g)g)%, then
U= g(a(g)g)_% € Ua,q)- Indeed,

o(uu = (o(g)g)_%a(g)g(o(g)g)_% =1.

Now, we prove the injectivity. Let ¢ = ub = u’b’ where u, u’ € Up o), b, b € AS.
Theno(g)g = (b')? =b* € AY.. We take the spectral decompositions of b and b':

k 14
b = Zkici, b/ = Z)\.;CZ
i=1 i=1

where all k, k" € N, 4;, A, > 0 and {¢;}, {c]} are complete orthogonal systems of
idempotents of A°. Then

14

k
bP =Y M=) ()i =)
i=1

i=1

Because of the uniqueness of the spectral decomposition, k = k" and, up to reordering,
allA? = (\))%, ¢; = ¢}. Butall &; > 0, therefore, A; = A},i.e.b =0'andu = gb~! =
g(b/)—l =u.
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Finally, by definition, pol is continuous. Moreover,

pol ™ (g) = (g(c(2)8)) 2. (5(2)8))?)

is continuous as well and contains only semi-algebraic operations. Therefore, pol is a
semi-algebraic homeomorphism. O

Corollary 2.67 The map

Ai_ x Ua,o) = A%
(b, u) — bu

is a semi-algebraic homeomorphism. In particular, for every g € A* there exist unique
be AY and u € Ua,o) such that g = bu.

Corollary 2.68 The group Us,s) < A is a semi-algebraic deformation retract of
AX,

Proof This follows from the polar decomposition 2.66 and from 2.43. O

Proposition 2.69 The following K-bilinear form B: A x A — K:

Blay, az) == tr (0(“1)‘12 ‘;U(az)m)

on A is positive definite. The group U4 ) acts on A by the left and right multiplication
preserving B.

Proof The map B is K-bilinear on A. Moreover, B(a,a) = tr(o(a)a) > 0 for all
a € A because o (a)a € AZ,.

If B(a, a) = 0, then all eigenvalues of o (a)a are zero, i.e. o (a)a = 0 and, therefore,
because of semisimplicity of A we have a = 0 (see Proposition 2.59).

The form B is invariant under the left and right action by multiplication of U(4,¢)
because the trace is invariant under conjugation. O

Corollary 2.70 The adjoint action of U4 ) on A preserves B. In particular, the Lie
algebra A7 of U4 ) is compact.

Corollary 2.71 With respect to the norm induced by the inner product 8 on A, the
following subsets of A are closed, bounded and semi-algebraic:

o the group Ua o);
e D(A,o):={aeA|l—o0(a)ace A§0}~

In particular, for every vector subspace V of A, the set
D(V,o0):={aeV|l-o(a)aec Ay} =D(A,o0)NV
closed, bounded and semi-algebraic.
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We remind the definition of a derivation of a Jordan algebra:

Definition 2.72 Let V be aJordan algebra over some field K. A K-linearmap D: V —
V is called a derivation if D(xy) = D(x)y + xD(y) for all x, y € V. The space of
all derivations of V is denoted by Der(V).

Remark 2.73 The space Der(V) is a subspace of the space of all K-vector space endo-
morphisms End(V) of V. Moreover, Der(V) is a Lie algebra with respect to the
commutator and it agrees with the Lie algebra of the group of all Jordan algebra
automorphisms Aut(V) of V.

Proposition 2.74 Let (A, o) be a semisimple associative algebra over some field K.
The map ad: A=° — Der(A?), ad(u)a := ua — au foru € A%, a € A% isa
surjective homomorphism of Lie algebras.

Proof Aswe have seen before, forallu € A~° andforalla € A%,ad(u)a = ua—au €
A°. Moreover, it is easy to see that ad(u) is a derivation for all u € A~ and that ad
is a Lie algebra homomorphism. Therefore, ad(A~?) C Der(A?).

Since A is semisimple, A? is a semisimple Jordan algebra. Every derivation of a
semisimple Jordan algebra is inner (see [ 14, Theorem 2]), i.e. for every derivation D €
Der(A?) there exist aj, ap € A such that for all a € A, D(a) = ad([a;, az])a =
a1, azx]la—alay, az], where [-, -] is the commutator on A. Finally, notice that [a1, a3] €
A~? foray, ar € A°. That means that ad(A~?) = Der(A, o). 0O

Corollary 2.75 Let (A, o) be a semisimple associative algebra over a real closed field
K. The semi-algebraic connected component of the identity Autg(A°%) of the auto-
morphism group Aut(A?) of the Jordan algebra A° agrees with the semi-algebraic
connected component of the identity of the group Ad(U 4 +)) where Ad is the adjoint
Lie group action on its Lie algebra.

Proof This statement follows from the fact that Lie(Ua,+)) = A7, Lie(Aut(A%)) =
Der(A?) and the derivative of the adjoint action Ad is ad. ]

Corollary 2.76 Let (A, o) be a semisimple Hermitian algebra over a real closed field
K such that the Jordan algebra A° is simple. Then U ) acts transitively on the set
of all Jordan frames of A°.

Proof This statement follows from the fact that Autg(A?) acts transitively on the set
of all Jordan frames of A% (see [9, Corollary 1V.2.6] for a proof over R, general case
follows identically). i

Corollary 2.77 (Sylvester’s law of inertia) Let (A, o) be a semisimple Hermitian alge-
bra over a real closed field K such that the Jordan algebra A is simple. The action

YA x A% > A°
(a,b) — o(a)ba.

of the group A™ on A° preserves the signature of elements. The orbits of this action
are precisely the sets of all elements of fixed signature in A°.
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Proof Let k be the rank of A°. We fix a Jordan frame (¢;)*_; and denote: 0, , =
Z{’zl e — Z?:] ek—i+1 for p 4+ q < k. First notice that for every element b € A of
signature (p, ¢) there is an element ¢ € A such that 0, ;, = 0 (g)b1g. To see this,
first, we take a spectral decomposition b = Zle Mic; for a Jordan frame (c,-)f.‘:1 and
Al > -+ > Ar. Letu € U, 4) such that u maps the Jordan frame (cl-)f.‘:l to (ei){.‘zl.
Therefore: o (u)bu = Zle Aie;. Finally, we take a := Zf:l wie; where pu; = ){1
if 1; # 0 and u; = 1 otherwise. Then o (ua)b(ua) = op 4.

The structure group G(A?) acts on A preserving the signature (see
[15, Theorem 1]). Therefore, A* does it as well. O

2.7 Matrix algebra over a Hermitian algebra

One way to construct new semisimple Hermitian algebras is to consider a matrix alge-
bra over a semisimple Hermitian algebra. For this, we assume (A, o) to be a semisimple
Hermitian algebra. We consider the following anti-involution on the algebra Mat,, (A)
of n x n-matrices over A:

oT: Mat, (A) — Mat,(A)
M = oMT

where o (M) means applying o componentwise to elements of the matrix M €
Mat, (A). We denote

Sym,, (A, 0) := FixMatn(A)(aT);
Syme(A, o) :={M € Sym,(A,0) |o(x)T Mx € AZ, forall x € A"};
Sym; (A, o) := {M € Sym, (A, o) | o(x) ' Mx e A for all regular x € A"};
Un(A, U) = U(Mat;f(A),UT) = {M € Mat,,(A) | U(M)TM = Idn}

Proposition 2.78 For a Hermitian semisimple algebra (A, o), the algebra
(Mat, (A), oT) is Hermitian and semisimple.

Proof First, we have to check that forevery two M, N € Sym,, (A, o), if M?>+N? =0,
then M = N = 0.

Note that for every x € A", if o(x)Tx = 0, then x = 0. Indeed, take x =
(x1, ..., x) T suchthat o (x)Tx = o (x))x1 +- - -+ 0 (x)x, = 0. Since all o (x;)x; €
AZ,, all o (x;)x; = 0. Because of semisimplicity of A, all x; = 0.

Now, take x € A" and consider Mx, Nx € A". Assume M2 + N2 = 0, then

0= U(X)T(M2 + N2)x = O'()C)Tsz + G(x)TNZx = o(Mx)TMx + cr(Nx)TNx.
Since forevery y € A", o(y)Ty € A‘;O, o(Mx)TMx,o(Nx)T Nx = 0, By semisim-
plicity of A, Mx = Nx = O for all x € A". Therefore, M = N = 0.

Finally, we have to check that Mat, (A) is semisimple. We do it by induction.
Assume Maty (A) is semisimple for all k < n. Take X € J := J(Mat,(A)) in the
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Jacobson radical of Mat, (A) (see Definition A.1), we write X as a block matrix:

X a
x= (b y)
where x € Mat,_;(A), a,bT € A",y

,y € A. Since X € J by Proposition A.9,
oT(X)=—-Xand X2 =0,ie.0(x) =x,b =

_U(a)T7 y € A_O-a

X2 — x% — aa(a)T xa + ay —0
T \o@x—yo@" —o@Ta+y?)

Since 0 = o (a)Ta — y2 =o(@)Ta+ o(y)y and o@7a, o(y)y € A;O, o@’a =
o(y)y = 0. Because of semisimplicity of A, a = 0, y = 0. Moreover, since x2 —
ac(a)T = x? = 0 and Mat,_;(A) is semisimple, x = 0, i.e. X = 0. Therefore,

J = {0} and Mat, (A) is semisimple. ]

2.8 Complex extensions of algebras

Let A be an algebra over a real closed field K. We denote A¢ := A ®k K¢ and call A¢
the complexification of A. We extend o “complex anti-linearly” to an anti-involution
oc on Ac:

oc(x +iy) :=o(x) —o(y)i.
We embed Ac into Mat,(A) in the following way:

T: Ac — Maty(A)

vy (27). D

This map is an injective homomorphism of K-algebras. Moreover, the anti-involution
& corresponds to o under this embedding. From Corollary 2.18 we obtain:

Corollary 2.79 Let (A, o) be a Hermitian algebra. The algebra (Ac, o¢) is Hermitian
if and only if A is semisimple. If A is semisimple then Ac is semisimple.

Proof If (A, o) is Hermitian and semisimple, then (Ac, o) is Hermitian and semisim-
ple by 2.60.

If A is not semisimple, i.e. the Jacobson radical J (A) of A is not trivial, then by A.9,
for every 0 # x € J(A), x2 = 0 and o (x) = —x. Therefore, 6c(ix) = ix # 0,
ie. ix € Aﬁ’c‘c and (ix)> = 0. This contradicts to the property to be Hermitian for
(Ac, o). m]
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Corollary 2.80 Let (A, o) be Hermitian and semisimple.

o The group Uac,60) = {2 € Ac | oc(z)z = 1} is semi-algebraically connected
(as a semi-algebraic deformation retract of a semi-algebraically connected space
AL).

o IfK =R, then the group U ac s¢) is a maximal compact subgroup ofA((X:.

Remark 2.81 There is another anti-involution on Ac, namely the complex linear exten-
sion o¢ of o. Together with this anti-involution Ac is never Hermitian because

0=1-1=o0c()-1+o0c@)-i.

Similarly to spectral theorems for o -symmetric elements of a semisimple, Hermi-
tian algebra (A, o), the spectral theorem for oc-normal elements of (Ac, oc) can be
proven.

Theorem 2.82 (Spectral theorem for normal elements, first version) Let (Ac, oc) be
Hermitian. For every oc-normal element b € Ac, there exist a unique k € N, unique
elements 1y, ..., . € Kc, all distinct, and a unique complete system of orthogonal
idempotents cy, ..., cr € Kc[b] N A%C such that

k
b= Z)\,‘C,‘.
i=1

We call this the spectral decomposition of b.

Theorem 2.83 (Spectral theorem for normal elements, second version) Let (Ac, o¢)
be Hermitian. Suppose that the Jordan algebra Agc has rank n. For every ac-normal

element b € Ac there exist a Jordan frame (eq, ..., e,) of A%C and an n-tuple of
elements (A1 (D), ..., Ay (b)) € K¢ such that

b= Zki(b)el‘.
i=1

The tuple (A1 (D), ..., Ay (b)) is uniquely defined by b up to permutations. The elements
A(), ..., An(b) € K (with their multiplicities) are called the eigenvalues of . In

particular, they do not depend on the Jordan frame ey, ..., e, € AE‘C.
Remark 2.84 A Jordan frame e, ..., e, € A%‘C associated to a o¢c-normal element
b € Ac by Theorem 2.83 is in general not unique and elements e1, ..., e, ¢ Kc[b],

in contrast to the complete system of orthogonal idempotents from Theorem 2.82.

Corollary 2.85 Let (A, o) be semisimple and Hermitian. Let ay, ay € A° that com-
mute. Then there exist a complete orthogonal system of idempotents ci, ...cxy € A®
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and elements Ay, ..., A, L1, ..., ik € K such that

k k
ay = Z)»ici, ap = Z,uici-

i=1 i=1

Moreover, there exist an a € A° such that cy, ..., cx € Kla). In particular, ay, ay €

Kla].
Corollary 2.86 Ifa € Ac is o¢c-normal, then o (a) € K[a].

Corollary 2.87 Let (Ac, 6¢) be Hermitian. Ifa € A~°C, then all the eigenvalues of a
are purely imagine. If a € U(ac 5¢), then all the eigenvalues are in St ={z e K¢ |
lz| =1}

Corollary 2.88 (Spectral theorem for U4 o)) For every u € U o), there exist unique
re NU{0}, s € {0, 1, 2} withr + s > 0, unique systems of idempotents ci, ..., c, €
AEC and ¢\, ..., c; € A% such that cy,...,c,C1,...,Cr,C},...,Cy is a complete

orthogonal system of idempotents of A%‘C and unique elements 1, ..., € Sﬂl( with
Im(¢;) > Oforalli € {1,...,r}all distinctand ¢1, . .. &5 € {1, —1} all distinct such
that

r s
u= Z(;,'Cj + EjEj) + Zé‘jc}.
j=1 j=1

Proof For an element u € Uac,50), 4 € Ua,o) if and only if u = u. We take the
spectral decompositions of u and u:

k k
w=7y ticj. =y ¢
j=1 j=1

where all {; € Sj, (cj) is a complete orthogonal system of idempotents of Ag‘c.

Notice, all ¢y, . .., ¢ is a complete orthogonal system of idempotents of AE‘C because
¢icj = c¢;cj. If u = u, then, because of uniqueness of the spectral decomposition, for
every j € {1,...,k} there exists j' € {1, ..., k} such that gjcj = ¢jycj. There can

be two cases:

(1) j=j'then¢; e Rie. g € {1, —1}.
(2) j#j'thency =cjand¢; ¢ R,ie Im(g;) # 0.

Because all ¢; are distinct, there can be at most one j such that {; = 1 and at most
one j with {; = —1. For such j, ¢; € A°. So we obtain

r s
U= Z(Cjcj‘ +§_'j5j) + Zsjc;-.
j=1 j=1
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for appropriate r, s € NU {0}, s < 2. Finally, we can rename the idempotents so that
Im(¢;) > Oforall j € {1,...7}. i

Definition 2.89 The determinant map on Ua 5¢) is given by:
n
det(u) = [ [ ¢j € Sk C K
j=1

where u = 27:1 ¢jej for some Jordan frame ey, ..., e, € A%C.

Proposition 2.90 Let K = R. The fundamental group of U ac 5) contains a copy of
(Z, +).

Proof The determinant map
det: Ucac,60) — s!
is continuous and surjective. It induces the homomorphism of fundamental groups:
(det)s: 11 (Ugag.s0), 1) — mi(Sh, 1).

This homomorphism is surjective because the curve u(r) = e'le; + Y i—oej for

t € [0, 2] for some Jordan frame e, . . . , e, maps to the curve det, u(r) = ¢!’ which
generates 71(SY, 1). Therefore u(r) generates in 71(Uac,50), 1) a subgroup that is
isomorphic to (Z, +). O

Theorem 2.91 Let (A, o) be a semisimple Hermitian algebra and (Ac, oc) be its
complexification. Assume that the Jordan algebra A%‘C is simple. The following action
ofAE on (A%C)X

Yot AG X (A — (A~
(a, b) — o(a)ba

is transitive.

Proof We will show that for every b € (A%‘C)X there exists an a € AE such that
Ye(a, 1) =b. We take b € (Afé‘c)X and consider its polar decomposition of b = ub’

where u € Uac6c), b’ € (A%C)X. Using the spectral theorem we obtain: b’ =
Z;‘:l Aici where (ci)f.‘:l is a Jordan frame of A%‘C and A; > Oforalli € {1, ..., k}.
We fix a Jordan frame ()c,-)f?:1 of A?. This is also a Jordan frame of A%‘C. By 2.76,

the group Uac,5¢) acts transitively on Jordan frames of Agc. Therefore, there exists
u' € Uac,50) such that x; = 6 (u')c;u’ foralli € {1, ..., k}. Further

k
oc(ubu' = oc W uce W) 'ecW)b'u = ocw ) usew)™! Zkix,- =:u"b"
i=1
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where u” = oc(uuscW')™! € Uac.o0), b = Zle)»,-x,- € A°. Since u"'b" =
o(u)bu' e A%C,

M//b// — U(C(u//b//) — b//U(C(M//) — b//(lx_i//)_l.

Therefore, b = u”b"i”. By induction, we obtain »” = (u”)"b"(a")" for all n € Z,
or equivalently (u”)"b"” = b"(@'")™".

Now assume K = R. Since (u”)"b” = b" (")~ holds for every n € Z, the
following equality f(u”)b” = b” f((&”)~") holds for every function f that can be
expressed as a convergent Taylor series at u”. Since u” € Uac 50, u” # 0. By 2.87,
there exists w € U, 5¢) such that (u”) = w?. So we can take as f the branch of the
square root such that f(«”) = w. Then we obtain wb” = b”()~'. Since any branch
of the square root is a semi-algebraic function, using the Tarski—Seidenberg transfer
principle (see [7, Proposition 5.2.3]), this holds for every real closed field K.

This implies:

-1 1 _
w T =yczw ', 1).

=

-1 L __
w— =ocbZw )b

=

W' = wb" " = (wh?)b
Finally, b = oc (W)~ DYu"b" @)~ = yebro— w)=", 1). O

2.9 Quaternionic extensions of algebras

If A is an algebra over a real closed field K, then we call A = A ®k Kpg the
quaternionification of A.

Sometimes, to make a construction more precise, we will write Ky{i, j, k} to
emphasize the imaginary units. The multiplication rule is then ij = —ji = k. Some-
times, we will also write K¢ {«} to emphasize the imaginary unit « of the complexified
field Kc.

If Ac = A ®k K¢ is the complexification of some real algebra A, then it can be
embedded into A ®k Ky in many different ways. If we write Ac := A ®x Kc{i},
Ap = Ak Kpu{i, J, K}, it means that Ac is embedded into Ay by the map induced
by the identification Ac 27 > i € Ap.

Let A be a K¢-algebra, Ag C A be K-subalgebra of A with the property that there
is a central element / € Z(A) such that I?=—land A = Aop @ Apl. Then we say
that Ag is a real locus of A with respect to the imaginary unit /. In this case, A is
isomorphic to Ag @k Kc{/} as Kc{1}-algebra. We take the following Kp-algebra:

HIA, Ao, I,J] := Ao ®r Ku{l, J, K}.

The algebra A sits inside H[A, Ao, I, J] as described above.

Definition 2.92 We call H[A, Ay, I, J] the quaternionification of A with respect to
the real locus Ag and the imaginary unit /.
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The algebra Ay can be embedded into Mat, (Ac) in the following way:

Tm: Am — Maty(Ac)

xX+yj— (_x)_} ;) . 2.2)

This map is an injective homomorphism of C{i}-algebras. Moreover, the anti-
involution o] on Ay defined as follows:

o1(x +yj) =ockx) —oc(y)j

forx, y € Ac, corresponds under this embedding to 5 7. By Corollary 2.18, we obtain:

Corollary 2.93 Let (A, o) be Hermitian and semisimple.

e The algebra (Am, o1) is Hermitian and semisimple.
o IfK =R, then the group U sy, o) = {z € Ac | 01(2)z = 1} is a maximal compact
subgroup of Aﬁ.

Remark 2.94 There is another anti-involution oy on A defined as follows:

oo(x + yj) = oc(x) +oc(y)j

for x, y € Ac. The algebra (Ay, o9) is never Hermitian.

2.10 Some properties of real Hermitian algebras

In this section, we assume that (A, o) is a semisimple real Hermitian algebra. We will
state some properties that depend on the fact that R is locally compact, contrary to the
other real closed fields.

Proposition 2.95 The group U4, o) is a maximal compact subgroup of A*.

Proof The group U4,y C Isom(B) is compact by 2.71. By 2.68, U4, is a defor-
mation retract of A*. Hence, it is a maximal compact subgroup of A*. O

Corollary 2.96 U, (A, o) is a maximal compact subgroup of Mat,* (A).

Corollary 2.97 (Polar decomposition, second version) The following map:

[ﬁ: Uia,o) X Ago — A
(u, b) — ub.

is proper, surjective.

Proof Since the group U4 ) is compact, we can take a closure in the polar decom-
position and the map stays surjective. Let K C A be a compact subset, then

—1 1
pol (K) S U, x {(0(a)a)? | a € K}
is compact. i
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Proposition 2.98 If A is Hermitian, the map 0: A — A2, is proper.

Proof Let K C AZ ) be a compact subset. Then

1 J—
07 (K) = {ub? | u € Uiap), by € K} = pol(Uia,o) x K).

Since Ua,o) x K is compact in Uga,s) X AZ, and [ﬁ is continuous, 68~ 1(K) is
compact. O

Proposition 2.99 Let (A, o) be Hermitian. The domain
D(A,0):={acA|l—-o(a)aec ALy}

is compact.
In particular, for every vector subspace V of A, the domain

D(V,o0):={acV|l—-o(@acAly}=DNV

is compact.

Proof This follows directly from 2.71. O

3 Symplectic groups over noncommutative algebras

In this section we introduce symplectic groups over a unital algebra with an anti-
involution.

3.1 Sesquilinear forms on A-modules and their groups of symmetries

Let A be a unital associative finite dimensional algebra over a field K with an anti-
involution o.

Definition 3.1 A o -sesquilinear form w on a right A-module V is a map

w:VxV—>A
such that
ox+y,7) =0, 2)+wly,2)
ox,y+27) =,y +ox,2)
w(x1r1, x2r2) = o (r)w(xy, xX2)r2
We denote by

Aut(w) :={f € Aut(V) | Vx,y € V:o(f(x), f(¥) = o(x, y)}
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the group of symmetries of w. We also define the corresponding Lie algebra:
End(w) ;= {f € End(V) | Vx,y € V : 0(f(x),y) + o(x, f(y)) =0}

with the usual Lie bracket [ f, g] = fg — gf.

We now set V. = A2. We view V as the set of columns and endow it with the
structure of a right A-module.

Definition 3.2 We make the following definitions:

(1) A pair (x,y) forx,y € A? is called basis of A? if for every z € A? there exist
a,b € A such that z = xa + yb.

(2) The element x € A? is called regular if there exists y € A? such that (x, y) is a
basis of A2

(3) I € A?is called a line if | = x A for a regular x € A%. We denote the space of
lines of A2 by P(A?).

(4) Two regular elements x, y € A? are called linearly independent if (x, y) is a basis
of A2,

(5) Two lines I, m are called transverse if | = x A, m = y A for linearly independent
x,y € A%

(6) An element x € A is called isotropic with respect to w if w(x, x) = 0. The set
of all isotropic regular elements of (A%, w) is denoted by Is(w).

(7) A line [ is called isotropic if / = x A for an regular isotropic x € A2, The set of
all isotropic lines of (A2, w) is denoted by P(Is(w)).

Definition 3.3 We consider a form w and say

(1) The form w is non-degenerate if for every regular x € A there exists a y € A2
such that w(x, y) € A*.

(2) The form is o -symmetric if w(x2, x1) = o (w(x1, x2)) for all x, x, € A%

(3) The form is o -skew-symmetric if w (x>, x1) = —o (w(x1, x2)) forall x1, x» € A2.

(4) When A is Hermitian, a o-symmetric form is called o -inner product if o (x, x) €
A9 for all regular x € A

We can now introduce the symplectic group Sp,(A, o) over (A, o).
Definition 3.4 Let (A,o) be a unital ring with anti-involution. Let w(x,y) :=
o(x)TQy with Q = (_01 (1)
on A2. The group Sp,(A, o) := Aut(w) is the symplectic group Sp, over (A, o). Its
Lie algebra is sp,(A, o) := End(w).

We have

soac.0) = {(41)

spa(A.0) = {(;“ _Cf(x))

From now on, we assume w(x, y) := a(x)TQy on AZ.

). The form w is called the standard symplectic form

o(a)c, o(b)yd € A®, o(a)d — o (c)b = 1} c Mat2X (A)

xX€A, y,z€ A"} C Maty(A).
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Definition 3.5 A basis (x,y) of A2 is called symplectic if x,y are isotropic and
w(x,y) =1L

Proposition 3.6 For every basis (x, y) of A> and for every z € A? there exist unique
a,b € A such that 7 = xa + yb. Moreover, for every regular x € A?, the map

A — xA
a+— xa

is an isomorphism of right A-modules.

Proof Take a basis (x, y) of A%. Consider the following A-homomorphism of right
A-modules:

A2 > A?
(a,b) — z =xa+ yb.

This is also a surjective homomorphism of K-vector spaces of the same dimension.
Therefore, it is injective, i.e. (a, b) is uniquely defined by z. The restriction of this
homomorphism to A x {0} is an isomorphism A — x A of right A-modules. i

Proposition 3.7 The form w is non-degenerate.

Proof Letx = (x1, x2)T € A? regular. We wantto find y € AZsuchthat w(y, x) = 1.
Since x is regular, there exists x” = (x{, xé)T € AZ such that (x, x’) is a basis. That

!/
means that the matrix X := (il i}) is invertible, i.e. there exists the inverse matrix
2
x = <Z,: ZZ). Therefore, ajx; + arxy = 1. We take y := (o (a2), —o (a1))7,
then
_ 0 1\ [(x1) _ x1\ _
w(yv-x) - (a27 al) <_1 0) <x2) - (alv aZ) <x2> - 1'
So w is non-degenerate. O

Proposition 3.8 An element x = (x1, x2)7 € A? is isotropic if and only if o (x1)x2 €
A°.

Proof The proof follows by direct computation. i
Proposition 3.9 If x, y € A% are isotropic and w(x, y) = 1, then (x, y) is a basis.

Proof Letx,y € A? are isotropic and w(x, y) = 1. Consider the map

A2 - A2
(a,b) — xa + yb.
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To see that this map is an isomorphism, it is enough to check that it is injective. Assume
xa + yb = 0 for some a, b € A, then

0=w(x,xa+yb) =wlx,y)b=0>b,
0=w(y,xa+yb) = —w(x, y)a = —a.

Soa=b=0. O

Corollary 3.10

Spy(A,0) = {(CCI Z) ‘ <<i> , (2)) is a symplectic basis}

Proposition 3.11 Ler x € A? regular isotropic, y € A% and w(x,y) € A*. Then
(x, y) is a basis of A%. In particular, y is regular.

Proof To see that (x, y) is a basis, it is enough to check that the map

A2 > A?
(a,b) — xa+ yb

is injective. Assume xa + yb = 0 for some a, b € A, then
0=w(l,xa+ yb) = w(x, y)b.
Since w(x,y) € AX, b =0.
The element x € A2 is regular, therefore, by Proposition 3.6, if xa = 0, thena = 0.

So, we obtain (a, b) = (0, 0), i.e. the map above is an isomorphism. O

Proposition 3.12 For every regular isotropic x € A2, there exists an isotropic y € A?
such that (x, y) is a symplectic basis.

Proof Since w is non-degenerate, there exists y' € A such that w(x, y’) € A* and
(x, ') is a basis. We take y" :=y' — S (y/, x) " lw(y, y), then
1 _
0", =0, )) = 500, De, 0T el y)

1
—50 @0, 0wy, y)ox, y) = 0.

Since w(x, y') = w(x, y"), if we take y := y"w(x, y')~!, we obtain w(x, y) = 1 and
X, y are isotropic, so (x, y) is a symplectic basis. O

Corollary 3.13 The group Sp,(A, o) acts transitively on regular isotropic elements of
(A%, w).
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Proof If x = (x1,x2)T € A?isregular isotropic, then there exists y = (yq, y2)7 € A?
regular isotropic such that (x, y) is a symplectic basis. Then

g = <x1 yl) € Spy(A,0)

X2 N

and g(1,0)7 = x. ]

Let now K be a real closed field and (A, o) be a Hermitian K-algebra. We consider
the following sesquilinear form b: A2 x A% > A, b(x,y):= o(x)Ty forx,y e A2,

Proposition 3.14 b(x, x) = 0 for an element x € A% if and only if x = 0.

Proof Forx=(x1,x2)7 € A%, b(x, x) = o (x1)x140 (x2)xy witho (x1)x1, o (x2)x2 €
AZ,. I b(x, x) =0, then o (x1)x1 = o (x2)x2 = 0. O

e 2 -
Proposition 3.15 [f x € A“ is regular then b(x, x) € AT.

Proof Let x = (x1, x2)T and assume b(x,x) = oc(x)x = o(x1)x] + o(x2)xy €
AZ, is not invertible. By the Lemma 2.27, there exists ¢ € R[a] € A such that
0 = ¢b(x, x)c = b(xc, xc). Therefore, xc = 0 and so by Proposition 3.6, the map
A — x A, a — xa is not invertible. In particular, x is not regular. O

Proposition 3.16 (Gram-Schmidt orthogonalization) Let x € A? be regular, then there
existsa € A and y € A? such that (xa, y) is an orthonormal with respect to b basis
0fA2, i.e. b(xa,xa) =b(y,y) =1, b(xa,y) =0.

Proof Since x is regular, b(x, x) € A9. Take a = b(x, x)’%, then b(xa, xa) = 1.
Moreover, there exists z € AZ such that (x, z) is a basis of AZ. Consider y =
7z — xab(xa, ), obviously (xa, y’) is a basis as well. Then b(xa, y') = b(xa,z —
xab(xa, 7)) = b(xa, z)—b(xa, xa)b(xa, z) = 0.Since y’ isregularandsob(y’, y') €
A%, we can take y := y'b(y’, y) 1. O

3.2 Maximal compact subgroup of Sp, (A, o) over Hermitian algebras

We now assume K = R and (A, o) to be Hermitian, semisimple R-algebra. We
describe a maximal compact subgroup of Sp, (A4, o).

Definition 3.17 We denote:

Uz(A,0) :={M € Mat,y(A) | o(M)TM = Id};
KSp,(A, o) :=Spy(A,0) NU2(A, 0).

o(a)a+aob)b =1

Proposition 3.18 KSp,(A, o) = {( “ b) o(ayb—o(b)a=0"

—b a

a,beA}.
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Proof Take M := (i 2) € KSp,(A, o). On one hand, M € Sp,(A, o), therefore,

L (01 (01 _ (o@d —ob
M —_<—10)"(M) <—10)_<—U(c) o(a))'

On the other hand, M € U,(A, o), therefore,

-1 r_ (o) o)
M~ = o (M) _<G(b) G(d)).

So we obtain,a =d and b = —c. O
Theorem 3.19 The group KSp, (A, o) is a maximal compact subgroup of Sp,(A, o).
Proof The group KSp,(A, o) is a closed subgroup of the compact group Uz (A, o),
so it is compact.

Now, we show that KSp, (A, o) is a maximal compact subgroup of Sp, (A, o). For

this let K be a compact subgroup containing KSp, (A, o) as a proper subgroup. We
consider the following decomposition of sp, (A, o):

5Py (A, 0) =tspy(A,0) D S

where

Esp,(A, o) = Lie(KSp,(A, 0)) = {(_"b 2) o(@)=—acAbe A"} ,

=1 %)

By our assumption, Lie(K) contains #sp, (A, o) and has nontrivial intersection with
S. Take some matrix

c,deA"}.

c d . .
(d _C> eLie(K)NS, c,d € A°.

The matrix
0 d .
<—d O) € tsp,(A, 0) C Lie(K),

therefore,

((C) i‘é) = (fz _dc> + (_Od é) € Lie(K) \ sp,(A, o).
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Using the exponential map of sp,(A, o) restricted to Lie(K), we obtain that there

exits a matrix M := (g gg_xl) € K\KSp,(A, o) where g = exp(c) € A%, x € A°.

We consider the spectral decomposition of g = Zle Aic; with A; > 0 and (ci)fz 12
complete orthogonal system of idempotents. Take a sequence {M"} € K. Then

k k
My, ng = Z)\fci’ M, =g_k = Z’\i_rci-

i=1 i=1

Assume that there exists s € {1, ..., k} such that A; 7 £1. Then either 0 < |A| < 1
or (0 < |A;1| < 1. Without loss of generality, we may assume 0 < |Ag| < 1. Since K
is compact, {M"} C K has a convergent subsequence {M'/} C K:

k k
lim M} = lim Z Ale = Z rici
i=1

i=1

where A; = lima;”. But Ay = limay = 0 for any subsequence {r;}. Therefore

lim erjl is not invertible and so lim M’/ is not invertible as well. Therefore, all

A = £1 and g2 = 1. The element L := ggg) € KSp,(A,0) C K. Then
I x - Irx .

ML = 01) € K. Take (ML) = 01)€ K. This sequence does not have any

convergent subsequence unless x = 0. So we get M = L € KSp,(A, o). This contra-
dicts the assumption M ¢ KSp, (A, o) and we obtain that KSp, (A, o) is a maximal
compact subgroup of Sp, (A, o). O
Corollary 3.20 The embedding

T: Ac — Maty(A)

(see Eq. 2.1) maps U ac,5¢) isomorphically to KSp, (A, o). In particular, the funda-
mental group of Sp, (A, o) is infinite.

3.3 Maximal compact subgroups of Sp, (Ac, oc) over complexified algebras

Let K = R and (A, o) be a Hermitian, semisimple R-algebra. In Sect. 2.8 we have
seen that (Ac, o¢) is also Hermitian and semisimple and (Ac, oc) is never Hermitian.

Definition 3.21 We set

KSp5(Ac, oc) := Spy(Ac, oc) NUz(Ac, 6c).
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Proposition 3.22 The group KSp5(Ac, oc) is given by

KSpS(Ac, o) = {(_“B 2)

Proof Take M := <Z

&c(a)a + oc(b)b =1
sc(a)b —oc(b)a=0"

a,beA(c}.

2) € KSp§(Ac, oc). On one hand, M € Sp,(Ac, oc),

therefore,

1_ (01 7({0 1\ (ocd —oc(b)
M= (—1 0) oc(M) <—1 O> o (—a(c(c) ocla) |-
On the other hand, M € U,(Ac, oc), therefore,

L (en@ de)
M “’(M)C‘<6<c(b) 6<c(d)>'

So we obtain, d = @ and ¢ = —b. O

Theorem 3.23 The group KSp5(Ac,oc) is a maximal compact subgroup of
Spy(Ac, o).

Proof The proof follows the same strategy as the proof of Theorem 3.19.

By definition, KSp§ (Ac, oc) is closed subgroup of Uz (Ac, 6¢) which is compact,
so KSp§(Ac, oc) is compact as well.

To show that KSp5(Ac, oc) is a maximal compact subgroup of Sp,(Ac, oc), we
assume K to be a compact subgroup of Sp,(Ac, o¢) containing KSpS(Ac, oc) as a
proper subgroup. We consider the following decomposition of sp, (Ac, o¢):

spy(Ac, oc) = tsp5(Ac,oc) @ S

where

. C b
tsp3 (Ac, oc) = Lie(KSp3(Ac, o¢)) = {(‘al; ‘_’>

[ %

By our assumption, Lie(K') contains £sp5 (Ac, oc) and has nontrivial intersection with
S. So we can take a matrix

6c(a) = —a € Ac, b € A%},

c,deAﬁé}.

c d . G
(cf —E) € Lie(K)N S, c,d € Ag.
Then

(_Od— g) S Espg(A(c, oc) C Lie(K),
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therefore,

d 0 d\_..
<(C) ii) = (2 —5) + <_ p o) € Lie(K) \ tsp5(Ac, o).

Using the exponential map of sp,(Ac, oc) restricted to Lie(K ), we obtain that there
X _

‘(g) ;1> € K \ KSp§(Ac, oc) where g = exp(c) € AZ,

x € A%. We now consider the spectral decomposition of g = Zf: (Aici with A; >0

and (c; );‘:1 acomplete orthogonal system of idempotents. Take a sequence {M"} C K.
Then

exits a matrix M = (

k k

Miy =g = Nei, Myy=3*=) 3"c.
i=1 i=l

We assume, there exists s € {1, ..., k} such that A; 7= £1. Then either 0 < |As| < 1
or 0 < |)LS_1| < 1. Without loss of generality, we assume 0 < |Ag| < 1. Since K is
compact, {M"} C K has a convergent subsequence {M'/} C K:

k k
. rj . r 2
limM | = llmZAi"ci = Zk,-c,-
i=1 i=1

where A; = lima;”. But Ay = limay = 0 for any subsequence {r;}. Therefore
lim M lré is notinvertible and so lim M"/ is not invertible as well. Therefore, all A; = £1

and g> = 1. The element L := (g g91> € KSp5(Ac,oc) C K. Then ML =

((1) )1C> € K. Take (ML) = ((1) r1x> € K. This sequence does not have any

convergent subsequence unless x = 0. So we get M = L € KSp5(Ac, oc). This
contradicts the assumption M ¢ KSp§(Ac, oc) and we obtain that KSp$(Ac, oc) is
a maximal compact subgroup of Sp,(Ac, o¢). O

Corollary 3.24 Let (A, o) be a real Hermitian algebra, Ac be the complexification of
A, and oc be the complex linear extension of o. The embedding

Tu: Ag — Maty(Ac)

Sfrom 2.2 maps Uay o) isomorphically to KSp5(Ac, oc).

Remark 3.25 Notice, that the group KSp,(Ac, oc) is never compact because it is a
complexification of the real group KSp, (A, o).
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3.4 Realization of classical Lie groups as Sp, (4, 0)

In the case when (A, o) is a Hermitian algebra so that (A%, o) is a Jordan algebra,
the symplectic groups Sp, (A, o) are isomorphic to classical Hermitian Lie groups of
tube type. There are also other groups that can be realized as Sp,(A, o) for algebras
with anti-involution which are not Hermitian.

H

@

3)

Real symplectic group Sp(2n, R).

In order to realize the real symplectic group Sp(2n, R), we take A = Mat(n, R)
to the be algebra of n x n matrices over R and consider the involutiono : A — A
givenby o (r) =r’,r € A.

Then Sp, (A, o) is isomorphic to Sp(2n, R). The maximal compact subgroup is

KSp,(A,0) = Y (U(n)) = Un).

Indefinite unitary group U(n, n).

To realize the unitary group U(n, n) of an indefinite Hermitian form of sig-
nature (n,n) we consider A = Mat(n, C), and the involution 6 : A — A
given by 6 (r) = 7. Then Sp, (A, o) is isomorphic to U(n, n). To see this, we
notice that the standard Hermitian form / of signature (n, n) on C>" is given by
h(x,y) :=iwxT, yT) where T = diag(ld,;, —i Id,)). The complexification Ac
is isomorphic to Mat(n, C) x Mat(n, C) (see Sect. B.1.1). Therefore,

KSp,(A, o) = U(n) x U(n).

Note that we cannot realize the special unitary group SU(n, n) as Sp,(4, o).
The group SO*(4n).

By definition, the group SO*(2n) for n € N (some authors also use the notation
O(n, H)) is the group of isometries of the following form on the quaternionic right
module H":

Blx,y) =) Xijvi
i=1

where x = (x1,...,%x,),y = (1, ...yn) € H*and~: H — His the quaternionic
conjugation. The group SO*(2n) is a real form of the complex group SO(2n, C).
The groups SO*(2n) are Hermitian Lie groups, but they are of tube type only if
n is even. In order to realize SO*(4n) as Sp,(A, o) we consider A = Mat(n, H)
and the involution o7 : A — A, given by o1(r) = i1 = 6(r;) — o(r2)j for
r =ry +ryj and ry, ro € Mat(n, C). Then Sp, (A, o1) is isomorphic SO*(4n)
considered as the group of isometries of the quaternionic form g on H?" defined
by

2n
Blx,y) =Y Fijyi=x"(dg j)y.

i=1
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To see this, we notice that

. 0 1d
Ida, j = 01(T) <—Id O") T
n

for

T L Id, —1Id, j
V2 \— Id, j 1d, ’
In this case Ac is isomorphic to Mat(2n, C) (see Sect. B.1.2). Therefore.
KSp,(A,0) =U(2n).

Remark 3.26 The Hermitian Lie group of tube type SO¢(2, n) cannot be realized in
the same way as Sp,(A, o). The reason is that the Jordan algebra B, (see the clas-
sification 2.55) cannot be seen as A? for an appropriate Hermitian algebra (A, o).
Nevertheless, since B, can be seen as Jordan subalgebra of an appropriate Clifford
algebra, the group SOg(2, n) (or more precisely, its double cover Spin,(2, n)) can be
realized as Sp, over some more complicated object which we do not discuss in this

paper.

Remark 3.27 The exceptional Hermitian Lie group of tube type E7 cannot be realized
as Sp,(A, o). The reason is that the Jordan algebra Herm(3, O) (see the classifica-
tion 2.55) cannot be embedded into any associative algebra, in particular it cannot be
realized as A? for a Hermitian algebra (A, o).

Some other Lie groups can also be realized as Sp,(A, o) for algebras with anti-
involution (A, o) that is not Hermitian.

3.4.1 Other examples

There are other interesting cases of classical groups that can be realized as Sp, (A, o)
where (A, o) is not Hermitian.

(1) To realize the symplectic group over any field K we consider A = Mat(n, K)
with the anti-involution o (+) := r. Then Sp, (A, o) is isomorphic to Sp(2n, K).
If K = C, A is the complexification of Mat(n, R), and the maximal compact
subgroup is

KSp5(A, o) = Sp(n).
(2) The indefinite symplectic group can be realized as Sp, (A, o). For this consider
A = Mat(n, H) with involution o¢(r) = o(r1) + 6 (r2)j forr = ri + r2j and

r1, rp € Mat(n, C). Note that the algebra (A, op) is not Hermitian and also does
not appear as a complexification of a Hermitian algebra.
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Then Sp, (A, op) is isomorphic Sp(n, n) considered as the group of isometries of
the quaternionic form w on H>" given by

2n
- _r(—1Id, O
o, y) =Y Fy =i < 0 " Idn> y
i=1

_ Id,k O
—k<ao(x)< 0 —Idnk>y)'
To see this, we notice that

ok 0\ 0 1d,
(0 —Id,,k>—“°(T)(—1d,, 0>T

for

T 1 (1d,  Iduk
V2 \ld,k  1d, )°
The maximal compact subgroup of Sp(n, n) is Sp(n) x Sp(n). One can see this
using the machinery developed in the Sect. 5.3.

The subgroup KSp, (A, 09) is isomorphic to GL,, (H) which is not compact because
(A, o0p) is not Hermitian.

4 Space of isotropic lines

We assume (A, o) to be a unital ring with an anti-involution. We denote by P(A2) the
space of lines in A2, i.e.

P(A?) := {xA | x € A? regular}.
The group Mat (A) acts on P(A?).
If A% is equipped with the standard symplectic form w, we denote by P(Is(w)) the
space of all isotropic (with respect to w) lines:

P(s(w)) = {xA C A% | w(x, x) = 0, x regular}.

This space is a closed subspace of P(A2). The group Sp,(A, o) acts on the space of
isotropic lines.

4.1 Space of lines as a homogeneous space
Now assume K to be real closed field and (A, o) is an algebra with an anti-involution
over K. We show that P(A%) and P(Is(w)) can be seen as homogeneous (even sym-

metric) spaces that is compact in case K = R.
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Proposition 4.1 Let (A, o) be Hermitian. The group Us (A, o) acts continuously and
transitively on P(A2%) with

1 u; 0
StabUz(A’a') <0> A= {(0 Mz)

Proof Let x A be a line. Since x € A? is regular, by Proposition 3.15, we can assume
b(x,x) := o(x)Tx = 1. By Proposition 3.16, there exists y such that (x, y) is an
orthonormal basis, i.e. the matrix

(xl yl) c Us(A, o),

X2 N

Ui, up € U(A,a)} = U,0) X Ua,0)-

where x = (x1,x2)7, vy = (y1, y2)T. Moreover

xtoy\ (1) _
(n ) ()=
That means U, (A, o) acts transitively on P(A2).

Now compute the stabilizer of (1, O)TA. Take U = (il il) € Uy (A, o). Since
2 )2
U(1,0) = (a,0) for some a € A, x; = 0. Further

0 X1 Y1 o (x1)x o(x1)y1
Idy = o) U = (7D )(1 >=< ,
2=l (o(yo c2)\0 )T et oG +o0mm
Therefore, o (x1)x1 = 1,1.e. x1 € U(a,0). Further, o (x1)y; = 0. Since x1 € Ua,0),

it is invertible and so y; = 0. Finally, o (y1)y1 + 0 (y2)y2 = 0(y2)y2 = 1. Therefore,
MRS U(A,a)- |

Corollary 4.2 The space P(A?) is homeomorphic to the quotient space:
U2(A,0)/Uca0) X Ua,0)

where the group U, o) X U(a o) is embedded into Uy (A, o) diagonally.
Inparticular, if K = R, P(A2) is compact and P(Is(w)) is compact for any sesquilin-
ear form w: A* x A> > A.

Corollary 4.3 For Hermitian algebras and complexifications of Hermitian algebras,
we can describe the space P(Is(w)) more precisely. Similarly to the Proposition 4.1
and Corollary 4.2, one can prove the following two statements:

(1) Let (A, o) be Hermitian and w be the standard symplectic form on A>. Then
KSp, (A, o) acts transitively on P(Is(w)) with

1 0
oo ()=

u e U(A,(r)} = U(A’o').
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In particular, P(Is(w)) is homeomorphic to the quotient space:
KSp,(A,0)/Uca,0)

where the group Ua o) is embedded into KSp, (A, o) in the diagonal way.

(2) Let (Ac,oc) be the complexification of a Hermitian algebra (A, o) and w be
the standard symplectic form on Aé. Then KSpS(Ac, oc) acts transitively on
P(Is(w)) with

1 u 0
StabKSPE(ACVUC) <0) A= {(0 u>

In particular, P(Is(w)) is homeomorphic to the quotient space:

ue U(Ac,&c)} = Ulac,60)-

KSp3(Ac, 0¢)/Uac,5¢)
where the group U ac 5. is embedded into KSp§(Ac, oc) in the diagonal way.

Proposition 4.4 Sp, (A, o) acts transitively on P(Is(w)).

1
Stabsp, (4,0) <<0> A) = {(8 U()Jg—l)
0 0
Stabsp, (4.0) <<1> A) = {(z); U(x)])

Proof Sp,(A, o) acts transitively on the space of isotropic lines since it acts transitively
on Is(w).

We prove only the statement for the first stabilizer. The second one can be proved
analogously.

Since

xeAX,yeA"}

xeAX,zeA”}

x € A* and b = 0. Furthermore,

x a\\' (0 1\(x a\_( © o (x)t (0 1
\\o ¢ 1 0)\o ) " \—ot)x —o@Wa+o@:) " \=1 o)
we obtaint = o (x) "', a = xy fory € A?. O
4.2 Action of Sp, (A, 0) on pairs of isotropic lines

Let (A, o) be a unital ring with an anti-involution.
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Proposition 4.5 Two elements u, v € Is(w) are linearly independent if and only if,
up to action of Spy(A,0), u = (1,007, v = (a,b)T with b € A*. Moreover, if
w(,v) =1,thena € A°, b = 1.

Proof Sp,(A, o) acts transitively on Is(w), therefore, up to Sp, (A, o)-action, we can
assume thatu = (1, 0)7. Since u and v are linearly independent, b € A*. If w(u, v) =
1 =>,thenv = (a, l)T is isotropic, i.e.

w(w,v)=0(@)—a=0

Soa € A°. O
Corollary 4.6 If x, y € Is(w) linearly independent, then w(x, y) € A*.

Proposition 4.7 If (x, y) is a symplectic basis then there exists the unique g €
Sp,(A, o) such that g(1, 07 = x, g(0, nT = v. In particular, Sp,(A, o) acts tran-
sitively on symplectic bases.

Proof We can assume, x = (1,0)7, y = (a, )T and a € A”. Take g := ((1) _1a>’
then gx = x, gy = (0, 7. -

Corollary 4.8 Let xA, yA be two transverse isotropic lines with x,y € Is(w). Then
there exist M € Sp,(A, o) and y' € Is(w) such that yA = yA and Mx = (1, 07,
My' = (0, )T, In particular, w(x,y") = 1.

Proposition 4.9 Sp,(A, o) acts transitively on pairs of transverse isotropic lines.

1 O O X ~ X
Stabsp, (4.0) ((0) A, (1) A) = {(’8 6(x)1> |xeA } =~ A,

Proof. By the Corollary 4.8, every pair of transverse isotropic lines can be mapped to
(1,007 A, (0, DT A) by an element of Sp,(A, o). So Sp,(A, o) acts transitively on
pairs of transverse isotropic lines.

By the Proposition 4.4,

1 0
Stabst(A’o') ((0> A, <1) A)
1 0
= Stabsz(A’o') 0 AlN Stabsz(A,(r) 1 A
x 0
= {(O U(X)_1> |X S A} O

4.3 Action of Sp, (A, o) on triples of isotropic lines

Let (A, o) be a unital ring with an anti-involution. Let (x1 A, x3A4, x2A) be a triple
of pairwise transverse isotropic lines where all x; € Is(w). Because of transversality
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of x1 A and x2 A, we can assume w(xj, x2) = 1. Up to action of Sp,(A, o), we can
assume x; = (1,0)7, xo = (0, 1)”. We can also normalize x3 so that w (x1, x3) = 1.
Then x3 = (b, DT, b = w(x3, x2) € (A?)*.

Proposition 4.10 Orbits of the action of Sp,(A, o) on triples of pairwise transverse
isotropic lines are in 1-1 correspondence with orbits of the following action of A* on
(A(T ) X :

Y AN X (A9)X > (A9)*
(a, b) > abo (a).

Proof Let (I1, I3, [2) be a triple pairwise transverse of isotropic lines. Up to Sp, (A, o)-
action, we can assume /; = x; A for x; = (1,007, xo = (0, DT, x3 = (1, b)T with
b € (A?)*. The stabilizer Stabgp, (4,0)((1, 0T A, 0, DT A) & A* acts on x3 in the
following way:

diag(a, o (a) ""x3 = (ab, o (@)™ HT = (abo(a), ) a™!

i.e. diag(a, o (@)~ ") (b, DT A = (abo (a), DT A.
So we see that in the orbit of (b, 1)7 A are exactly all isotropic lines of the form
(', )T A where b’ is from the orbit of b under . O

Definition 4.11 Let (A, o) is a semisimple Hermitian algebra over a real closed field
such that A? is a simple Jordan algebra. The Kashiwara-Maslov index of a triple of
pairwise transverse isotropic lines (/1, [3, [2) is a signature of an element b € A? such
that up to the action of Sp,(A, 0),1; = x; A, x; = (1,007, x2 = (0, DT, x3 = (b, )T

We call a triple (I, [3, [>) of isotropic lines positive if its Kashiwara-Maslov index
is (n, 0) where n is the rank of A (or equivalently a corresponding element b is in
A9).

By the Sylvester’s law of inertia 2.77, the action v form 4.10 preserves the signature.
Therefore, the Kashiwara-Maslov index is well defined for every triple of pairwise
transverse isotropic lines. Moreover, because of 2.65, the positivity of a triple is well
defined for every semisimple Hermitian algebra (not only if A? is a simple Jordan
algebra).

The following properties of the Kashiwara-Maslov index are well known (see [18,
Section 1.5], [8, Section 5]):

Proposition 4.12 (1) The Kashiwara-Maslov index j is alternating and invariant for
the diagonal action of Sp,(A, o) on the space of transverse triples of isotropic

lines;

(2) n takes values {—n, —n + 2, ..., n} where n is the rank of the Jordan algebra
AU’.

(3) wisacocycle: for 4-tuple (11, l2, I3, l4) of pairwise transverse isotropic lines, we
have

wlla, I3, 14) — w(ly, I3, 14) + u(ly, 2, 14) — pny, 12, 13) = 0.
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Proposition 4.13 If (A, o) a semisimple Hermitian algebra over a real closed field,
then Sp, (A, o) acts transitively on positive triples of isotropic lines.
The stabilizer of the positive triple

(o) (1) ())

in Sp, (A, o) coincides with the following subgroup:

-1

The stabilizer of every positive triple of isotropic lines is conjugate in Sp,(A, o) to
U.

Proof This follows by a direct computation from 2.65 and 4.10. O

u e U(Ayo')} = U(A’o‘).

Proposition 4.14 If (A, o) a semisimple Hermitian algebra over a real closed field
such that A° is a simple Jordan algebra of rank n, then Sp, (A, o) acts transitively on
triples of isotropic lines with a fixed Kashiwara-Maslov index.

Let p,q € NU ({0} with p + q = n. Let (¢;)]_, be a fixed Jordan frame in A° and
Opq =2 h_ei — > L epsi. The stabilizer of the triple

(o) ("57)~(2)4)

in Sp, (A, o) coincides with the following subgroup:

sera=|(; )

Proof This follows by a direct computation from 2.77 and 4.10. i

oW)opqu = op,q} .

Finally, we consider the complexification (Ac, oc) of a Hermitian algebra (A, o).
In this case, the action of Sp,(Ac, o) on triples of isotropic Ac-lines is transitive if

the Jordan algebra A{" is simple.

Proposition 4.15 Let (Ac, oc) be the complexification of a Hermitian algebra (A, o)
over a real closed field such that the Jordan algebra A(%C is simple. The group
Sp,(Ac, oc) acts transitively on triples of isotropic Ac-lines.

The stabilizer of the triple

(o) (1) ())

in Sp, (Ac, oc) coincides with the following subgroup:

|6

u e U(AC,UC)} = Uac,o0)-
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The stabilizer of every positive triple of isotropic lines is conjugate in Sp,(A, o) to
U.

Proof This follows from 2.91 and 4.10. O

4.4 Action of Sp, (A, 0) on quadruples of isotropic lines - the cross ratio

Let (A, o) be aunital ring with an anti-involution. We consider the following subspace
of A:

Ao :={bb' | b, b € (A7)*}.
A acts on Ag by conjugation because for b, b’ € (A°)*,a € A*:

a(bbya~' = (abo(a))(o (@)~ 'b)a"! € Ay.

Remark 4.16 1t is a well-known fact from linear algebra that for matrix algebras A
over R, C or H, we always have Ag = A*.

Proposition 4.17 Orbits of the action of Sp,(A, o) on quadruples of pairwise trans-
verse isotropic lines are in 1-1 correspondence with orbits of the following action of
A* on Ay:

n: A* x Ag = Ag
(a,b) + aba™'.

Proof Let (11, 13, >, l4) be a quadruple pairwise transverse of isotropic lines. Then up
to action of Sp,(A, o), we can assume [} = (1,007 A, 1, = (0, DT A, I3 = (b, )T A,
Iy = (1, )T A with b, b’ € (A%)*. Consider the action of the stabilizer of (I1, [»):

diag(a, a(a)fl)(b, DTA = (abo(a), 1A,
diag(a, o (@) "1, )T A = (1,0 '"ba™"A.
We consider the map (I1, I3, I, I4) — bb’ € Ag. This map is well-defined, bijective
and the action of the stabilizer of (/1, /) (that is isomorphic to A*) induces the action

of A* by conjugation on Ag. So we obtain that these two actions are isomorphic. O

Definition 4.18 The conjugacy class of A( corresponding to the quadruple (I1, I3, I3, I4)
of pairwise transverse isotropic lines is called the cross ratio of (11, 3, [2, l1).

4.5 Examples of matrix algebras

In this section, we construct explicitly examples of spaces of isotropic lines for classical
matrix algebras. We will use the following notation: for complex numbers, we write
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C{I} to emphasize that the imaginary unit is denoted by /. Similarly, for quaternions,
we write HI{/, J, K} to emphasize that the imaginary units are denoted by 7, J, K.
The multiplication rule is then /J = K.

Example 4.19 Let (A,o0) be (Mat(n,R),o0), (Mat(n,C), o), (Mat(n,C),5) or
(Mat(n, H), ) where o is the transposition, ¢ the composition of transposition and
complex/quaternionic conjugation.

Every regular element of x € A2 can be seen as a 21 x n-matrix of maximal rank.
Columns of this matrix are elements of K2 considered as a right K-module where K is
R, C or H. If we take the K-span of this columns, we obtain n-dimensional submodule
of K" denoted by Spang (x). It is easy to see that the map:

L:P(A?%) — Gr(n, K*)
xA > Spang(x)

where Gr(n, K*") is the space of all n-dimensional submodules of K" is a bijection.
We consider the following form (bilinear or sesquilinear depending on o) on K?":

@(u,v) :=ou) <—(I)dn I((i),,) v

for u, v € K**. Then x € Is(w) if and only if Spany (x) is isotropic with respect to @,
that means for all u, v € Spany (x), @(u, v) = 0. So we obtain that L maps bijectively
isotropic lines of A? to isotropic n-dimensional submodules of K. Such submodules
are called Lagrangian with respect to @. The space of all Lagrangian with respect to
& submodules are denoted by Lag(K>", &).

Example 4.20 Let A = Mat(n, C{I}) ® C{i} with the anti-involution ¢ ® Id. We use
the map x : A — A’ (see Appendix B.1.1) to identify A with A’ := Mat(n, C{i}) x
Mat(n, C{i}). The anti-involution ¢’ := x o (6 ® Id) o x ! induced by & ® Id on
Mat(n, C{i}) x Mat(n, C{i}) acts in the following way:

(m1, m2) = (mj . mp).
The map yx can be extended componentwise to the map
x': Maty(A) — Maty(A").
Proposition 4.21 Sp,(A, ¢ ® 1d) is isomorphic to GL(2n, C).

Proof First, we note that
A%®M — Sym(n, C{i}) + Skew(n, C{i})1.
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It is enough, to identify sp, (A, 6 ® Id) and Mat, (Ar) = Mat(2n, C) as Lie algebras.
First, we take the map ' restricted to sp, (A, & ® Id):

x': spy(A, o) — Mat(2n, C{i}) x Mat(2n, C{i})
ay +axl by + byl ay + axi by + byi ay —axi by — byi
c T, Tr )™ - Tt 1: )\ .. T _ T
1t+cl —ay +ayl ci1tei —aj +ayi c1—ci —aj —ay i
where aj, a; € Mat(n, C{i}), by, c; € Sym(n, C{i}), by, ca € Skew(n, C{i}). This
is an injective homomorphism of C{i}-Lie algebras as restriction of injective map.
Finally, we take a projection to the first component:

w1 : Mat(2n, C{i}) x Mat(2n, C{i}) — Mat(2n, C{i}).

Easy computation shows that 1 o x’ is an isomorphism. i

The set (A)? can be identified with the space of pairs (x1, x2)T such that x;, x5 €
Mat(n, C{i}). We define the sesquilinear form:

o 010" = (gl g o) 02w

(S, Hnoo( l, S

Therefore,

Is(w) = {(l1, b) | | = x1 Mat(n, C{i}), I, = xo» Mat(n, C{i}),

X1, xp regular, w(x1, x2) = 0}.
Since w is non-degenerate, /5 is uniquely determined by /1. Therefore, we can identify:
Is(w) = {x Mat(n, C{i}) | x regular}.

As in the previous example, we can identify lines in Mat(n, C{i})> with Lagrangian
subspaces of (C*", @) where:

~ T 0 1d,
o(u,v) =u (—Id,, O)v

So the space Is(w) can be identified with
Is(w) = {(I1, ) € Gr(n, C*)? | &(u,v) =0forallu € I1, v € I}.
The form @ is a non-degenerate. Therefore, for [ € Gr(n, C2") there exists exactly
one @-orthogonal complement /[~ € Gr(n, C*") such that for all u € [, v € I+,
o(u, v) = 0. So we can identify

Is(w) = Gr(n, C*)
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and GL(2n, C) acts on Gr(n, C*") in the standard way.

Example 4.22 Let A = Mat(n, H{i, j, k}) ® C{I} with the anti-involution ¢ ® Id. We
use the map ¥ : A — A’ (see Appendix B.1.2) to identify A with A’ := Mat(2n, C).
The anti-involution ¢’ := ¥ o (6 ® Id) o w—l on A’ induced by & ® Id on Mat(2n, C)
acts in the following way:

(0 w1\ (0 1
" ~1d o)™ \-1a o)
We define the following o’-sesquilinear form on (A”)%: for x, y € (4’)?
0 1d
7 T 2n
a)(x»)’)—o'(x) <_Id2n 0 )y

Proposition 4.23 Sp, (A, 6 ® Id) is isomorphic to O(4n, C).
Proof M € Sp,(A’,0’) = Sp,(A, & ® Id) if and only if

/ T 0 IdZn _ 0 Id2n
o (M) (—IdZn 0 )M_<—Id2n 0 )

ie.
0 Id, 0 1Id,
I i 0 u’ —-1d, 0 0
0 0 Id, 0 0 Id,
—1d, 0O —Id, 0
) 0 Idzn M= 0 Id2n
—Idy, O —1Idy, O
This is equivalent to:
0 1Id, 0 1Id,
O I A R S A
0 —1Id, 0 | 0 —1d, 0
Id, O Id, 0

So the group Sp,(A, o) is the group of symmetries of the symmetric bilinear form
form

0 Id,
—Id, 0

0

0

0 —1Id,
Id, 0

on C*'. But all symmetric bilinear forms on C*" are conjugated. Therefore, Sp, (A, o)
is isomorphic to O(4n, C). ]
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Note that Is(w) = Is(’) for

0 1d,
Oy, o

0 -1, .

d, 0

o' (x,y) =xT

As before, we can identify lines in (A’)? with the space Gr(2n, C*") of 2n-
dimensional subspaces of C** using the map L (see Example 4.19). Under this map,
the space Is(w) goes to the space of all maximal @-isotropic subspaces where

0 0 Id,

- T —Id, 0O

o(u,v) =u 0 —1d, . v
Id, O

for x,y € C*. The group O(®) = O(4n, C) acts on the space of all maximal @-
isotropic subspaces in the standard way.

5 Models for the symmetric space of Sp, (A, 0) over Hermitian
algebras

The goal of this Chapter is to construct different models of the symmetric space
for Sp, (A, o) for a real Hermitian algebra (A, o). In the case when Sp,(A, o) is a
classical Hermitian Lie group of tube type, we recover many aspects of their well-
known structure theory. We refer the reader to [16, 21] for standard works on Hermitian
Lie groups and their symmetric spaces.

In this Chapter, we discuss only groups Sp, (A, o) for semisimple Hermitian alge-
bras (A, o) over the field R. In this case, the corresponding symmetric spaces naturally
become Riemannian manifolds. Even if there is no established notion of Riemannian
manifold for spaces defined over general real closed fields, the corresponding sym-
metric spaces still have some kind of “Riemannian structure” on them. For example,
a Sp, (A, o)-invariant K-valued Riemannian metric is well-defined. Moreover, as we
will see, all the models we are going to describe in this Chapter are semi-algebraic sets
that are semi-algebraically isomorphic to each other. This allows us to define a natu-
ral semi-algebraic structure on symmetric spaces for Sp, (A, o) for every semisimple
Hermitian algebra (A, o) over any real closed field K.

5.1 “Space of complex structures” model
The first model we construct is the “space of complex structures” model.

Definition 5.1 A complex structure on aright A-module V isan A-linearmap J: V —
V such that J2 = —1Id.

W Birkhauser



Symplectic groups over noncommutative algebras Page 57 0f 119 82

Let V = A? and w be the standard symplectic form on AZ. For every complex
structure J on A%, we define the following o -sesquilinear form

hy: A2 x A? > A
(x,y) = o(Jx),y)
We remind the definition of a o -inner product:

Definition 5.2 A o -sesquilinear form 4 on (A2, ) is called o -inner product if h is
o-symmetric and for all regular v € A% h(v,v) € A%

We define the space of complex structures by setting
¢:= {J complex structure on A% | hy is an o-inner product} .

We show now that € is a model of the symmetric space of Sp,(4, o).
Proposition 5.3 Let J € € and w € Is(w), then J(w) € Is(w).

Proof For w € Is(w),
o(J(w), J(w)) = hj(w, J(w)) =o(h;(J(w), w)) =o(@(w,w)) =0,

therefore, J(w) € Is(w). O

Proposition 5.4 Let J be a complex structure on A%. Then J € € if and only if there
exists w € Is(w) such that (J(w), w) is a symplectic basis ofAz.

Proof 1. Let J € € and w' € Is(w). Since hy(w’, w') = b € A%, we can take

w = w’b_%, then iy (w, w) = 1. Then:

o(J(w), J(w)) = hj(w, J(w)) =0 (h;(J(w), w)) =o(ww,w)) =0,
o(J(w),w) =h;j(w,w)=1.

Therefore, (J(w), w) is a symplectic basis of A2,
2. Let w € A2 such that (J(w), w) is a symplectic basis of AZ. Then,

hy(w,w) =w(J(w), w) =1
hy(J(w), J(w)) = w(J>(w), J(w) = —o(w, J(w)) = 1,
hy(J(w), w) = o(J*(w), w) = —w(w, w) = 0.

Therefore, (J(w), w) is an orthonormal basis for /2 ; and in this basis % ; is the standard
o-inner product, so & is an o-inner product. O

Definition 5.5 The standard complex structure on A is the map

Jo: AT > A?
(x,y) = (y, —x)
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Theorem 5.6 Sp,(A, o) acts on € by conjugation. This action is transitive. The sta-
bilizer of the standard complex structure is KSp, (A, o).

In particular, € = Sp,(A, 0)/ KSp,(A, 0) is a model of the symmetric space of
Spy (A, o).

Proof. 1. First, we prove that Sp,(A, o) acts on € by conjugation. Let J € €, g €
Sp,(A, o). Consider J' := g~ 'Jg. (J))?> = g7'J%g = —1d so J' is a complex
structure on A2, For x € Is(w), g(x) € Is(w) and we obtain

hy(x,x) = o(J'(x),x) = w(g" Jg(x), x)
=w(Jgk),g) =hy(gx), gx)) € AT.

Therefore, h ;s is a o-inner product on A2, i.e. J' € €.

2. Second, we prove that this action is transitive. Let J € €, take a symplectic
basis (J(w), w) from the Proposition 5.4. Since Sp,(A, o) acts transitively on sym-
plectic bases, there exists g € Sp, (A, o) which maps the standard symplectic basis to
(J (w), w). That means, g maps the standard complex structure Jy to J. So the action
is transitive.

3. Finally, compute the stabilizer of Jo. g € Stabgp,(a,6)(Jo) if and only if g €
Spy(A,0) and g € O(hy,) = Uz(A, 0), 1.e.

g €Spy(A,0) NUz(A,0) = KSp, (A, o). O

5.2 Upper half-space model

Now we describe the upper half-space model that generalizes the well-known upper
half-plane model for SL(2, R).

We denote as before by Ac the complexification of A, i.e. Ac := A @r C. We
extend o to Ac complex linearly, i.e. oc(x + yi) := o (x) + o (y)i.

Every element of z € A%‘C can be uniquely written as z = x 4+ yi where x, y € A°.
We denote by Re(z) := x, Im(z) := y. We also have a complex conjugation on Ac
given by z = x — yi.

Definition 5.7 The upper half-space is
U:={z € AL | Im(z) € AT}

Proposition 5.8 The group Sp,(A, o) acts transitively on Y via Mobius transforma-
tions

zt+> M.z = (az + b)(cz +d)7l, where M = (i Z) .

The stabilizer of 1i is KSp, (A, o).
In particular, L is a model of the symmetric space of Sp,(A, o).

W Birkhauser



Symplectic groups over noncommutative algebras Page590f 119 82

Proof First, we show that the action is well defined. Since Sp, (A, o) is generated by

matrices
a 0 0 1 1 b
0 o@')’\-1 0)°\0 1

where a € A*, b € A%, we proof that M.z € i for all z € 4l on these generators.

ItM = ((1) li) withb € A%, then M.z = z+b € AT andIm(M.z) = Im(z) € A%.

IfM .= <_01 (1)>, then M.z = —z" ! ¢ Afé. If z =x 4+ iy, then

=y x0T =i+ o

ie.Im(M.z) =(y+xy 'x)"L.Forye A7, alsoy~! A%
Let y~! = o(p)p for some p € A, then

y+xy 'x=y+o(px)px e AT

Therefore, Im(M.z) = (y + xy 'x)"l e AT

M= (2 0 _1 | fora € A*,then M.z = azo(a) € A7 because A’ is closed

0o(a)

by action of A*. Im(M.z) = alm(z)o(a) € AT because AT is closed by action of
A*.

To prove the transitivity, we show that for every x € 4 there exists a Mobius
transformation that sends 1i to z. Let z = x + yi € 4 then y = u? for some
u € (A%)*. Then

-1
((1) ’{) (g u01>.(1i)=<’6 xuu_1>.(1i)=x+yizz

Finally, let us find the stabilizer of 1i. M = (Lcl 2) stabilizes 1i if and only if

li=M.i=(ai +b)ci+d)~" = (ai +b)(—c +di)"i.

So,a =dandc = —b,i.e. M € KSp,(A, 0). O

5.3 Symmetric space of O(h) for an indefinite form h

In order to describe other models of the symmetric space of Sp, (A, o), we consider
the following o -sesquilinear o -symmetric forms on A2:

Definition 5.9 A o-sesquilinear o-symmetric form 4 on A2 such that there exist a
basis (eq, e3) of A? such that h(er,e1) = —1, h(ez,e2) = 1, h(ey, e2) = 0 is called
indefinite.
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The standard indefinite form hy; is the o-sesquilinear o-symmetric form on A2

0 ?) in the standard basis ((1, 0)7, (0, 1)7) of A2.

given by the matrix (
We define the group of symmetries of 4 by :
O(h) := {g € Aut(A?) | h(gx, gy) = h(x, y) forall x, y € A},
and set

Xom) ={xA|x e A? such that h(x, x) € A%}, X = Xoy,)-

Remark 5.10 The space Xo;) is well defined because if xA = yA, i.e. there exists
a € A* such that y = xa, then

h(y,y) = o(@)h(x,x)a = o(a)o (p)pa = o (pa)pa € A%

where p € AX, 0(p)p = h(x,x) € AT.

Remark 5.11 Since Aut(A?) acts transitively on bases of A2, all O(h) are isomorphic
for indefinite . Therefore, all Xp(;) are also isomorphic.

Proposition 5.12 O(hy;) acts transitively on X with stabilizer of (0, 1)T A equal to
Ua,o) X U, diagonally embedded into O(hy;).

Proof Since hy ((0, DT, (0, D7) =1 € A7, the line (0, )T A € X.Let vA € X for
some v € A2. Since hy; (v, v) € A, there exists p € A such that iy, (v, v) = o (p)p.
Let v/ := vp~!, then h(v/,v') = 1 and v'A = vA.

Consider the vector w := (x, o (v2) 'o(v)x)T where v = (v, 1)T, x = (1 +
vlo(vl))%. Then an easy calculation shows that #(w, w) = —1 and A (v, w) = 0. So
we can take the following matrix M := (w, v) € O(hy,). Since M(0, DT = v, we
obtain M (0, 1)T A = vA, i.e. O(hy,) acts transitively on X'

Now, we compute the stabilizer of (0, 1)7 A. Let

M= (i z> € O(hy,)

stabilize (0, )T A, then M (0, )T = (b, d), i.e. b = 0. Moreover

-1 0\ (o) o(o) -1 0\ f(fa 0\ (—o(@ o())(fa O
0 1)\ 0 o(d) 0 1)\c d) 0 od)) \c d
_(—o(@)a+o(c)c o(c)d
o 0 o(d)d )’

Therefore, o(d)d = 1, i.e. d is invertible. So we obtain ¢ = 0 and o (a)a = 1, i.e.
a,d € Ua,o)- O
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Proposition 5.13 The group U o) x Ua,o) is diagonally embedded into O(hy;) as
a maximal compact subgroup of O(hg;).
In particular, X is a model of the symmetric space of O(hg;).

Proof First, note that the Lie algebra of O(hy;) is:

O(hst) = {(G[(lb) 2)

Assume, K is compact subgroup of O(hy,) that contains Ua,5) X Ua,o) as a proper

a(a):—aeA,o(d):—deA,beA}.

a b .
o (b) d) with b # 0. Therefore,

0 b a b a 0 .
= (o(b) 0) = (o(b) d> - (0 d) € Lie(K)

subgroup. Then Lie(K) contains an element <

and

0 th .
tx = (to(b) O> € Lie(K)

for all t € R. Take a polar decomposition of b = uy where u € Ua,4), y € A°. We
take the spectral decompositions of y: y = Zle Aici where (c;) is a complete system
of orthogonal idempotents, Ay, ..., A € R.

Further,
2= bo (b) 0
0 ob)b)’
Therefore,
k k
bo(b) =u Z)\izcibfl, o(b)b = Zkizci
i=1 i=1
and
exp(tx) = u Z;‘:l cosh(tAp)ciu=! u Zle sinh(tA;)c; c K
Zle sinh(zA;)ciu™! Zle cosh(t);)c; '

For ¢ going to infinity, exp(x?) does not converge even up to taking subsequence
unless all A; = 0. But this means that b = 0, so we obtain K = U4,4) X U(a,4). This
contradicts the assumption that U4,») X U(4,) is a proper subgroup of K. O

Proposition 5.14 The map

o X —  D(A,0)i=f{ceAll—a(c)c e A%}
(a,)TA — ab™!
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is a homeomorphism.

Proof Let xA € X then x = (a,b)” with —o(a)a + o (b)b € A%, i.e. there exists
p € A* such that

—o(a)a+o(b)b=o0o(p)p.
Therefore,
o(b)b =0(p)p +o(a)a € A%,

ie.be AX.Soforc =ab~!,xA = (c, I)TA. Moreover, for every line xA € X, the
element ¢ € A such that xA = (¢, 1)7 A is well defined and 1 — o' (¢)c € A9

For every ¢ € ﬁ(A, o), the line (¢, 1)T A € X because
hs (e, DT, (e, D) =1 —0o(c)c € AT

Therefore, ® is a homeomorphism. O

Corollary 5.15 O(hy;) acts on D(A, o) via Mobius transformations

2> M.z = (az +b)(cz+d)~', where M = (CCI z> .

This transformation is called Mobius transformation.

Remark 5.16 Since (A, o) is Hermitian, by Proposition 2.99 the domain B(A, o) is
precompact.

5.4 Projective model

Now we use X to construct the projective model of the symmetric space of Sp, (A, o).
Let Ac = A ® C and denote by oc : Ac — Ac the C-linear extension of o, i.e.

oc(x +iy) =o0(x) +io(y)

for every x, y € A and by o¢ the C-antilinear extension of o, i.e.
oc(x +iy) =o0(x) —io(y)

for every x, y € A.

As we have seen in the Corollary 2.80, (Ac, oc) is Hermitian. We extend w in the
following way:

1
wc(x,y) =ox)T (_01 0) Y.
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The following o -sesquilinear form is an indefinite form on A%C:

ey i=aew (0 0)y=iocto,

Indeed,

Wy, ) = ()’ (_Ol. 6) x=dc (ol oY (_Ol. ’0) y) = Ge(h(x. y)).

i

N\T T
Then in the basis e := (\/LZ’ ﬁ) , ey = (%ﬁ, —7§> , the form £ is represented

0
Note, Sp,(A, o) acts on Aé preserving wc and h.

by the matrix ( (1)) i.e. h is a o¢-sesquilinear indefinite form on A(zc.

Definition 5.17 The space
P = (vAc | v € Is(we), h(v,v) € (AZ)+} = Is(we) N Xow

is called the projective model.
To justify this Definition, we prove the following Proposition:
Proposition 5.18 The group Sp,(A, o) acts transitively on P with the stabilizer of
G, DT Ac equal to KSp, (A, o).
In particular, B is a model of the symmetric space of Sp,(A, o).
Proof Let v € Is(wc) such that £(v, v) € (A%)+, so vAc € 8. We can renormalize

v so that (v, v) = 2. We write v = u 4+ wi, then (w, u) is a symplectic basis of A2,
Indeed,

2=h(v,v) =iwcu —iw,u+iw) =i(w(u, u) + w(w, w)
+i(wu, w) —w(w, u)))
=ow(w,u)— o, w)+i(ou,u) +o(w,w));

O0=wc,v) =wu,u) —o(w, w) +i(w(u, w) + ow(w, u)).

Therefore, w(u, u) = w(w, w) = 0and w(w, u) = 1, i.e. (w, u) is a symplectic basis
of A%

Since Sp, (A, o) acts transitively on symplectic bases of A2, Sp,(A, o) acts tran-
sitively on 3.

Now compute the stabilizer of [y := (i, DTAc. Let M = (M;;) € Spy(A, o).
M (ly) = Iy if and only if

Myi + My = (Mayi + M2)i,

i.e. M1 = My, My = —Mj>. Thisholdsifandonly if M € Ux(A, 0)NSp,(A,0) =
KSp,(A, o). O
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Definition 5.19 The space P is called the the projective model of the symmetric space
of Sp, (A, 0).

Finally, we describe the Sp,(A, o)-equivariant homeomorphism between the
“space of complex structures” model € and the projective model 3. For this, we
extend every complex structure J on A” to a complex structure Jc on A%C in the
C-linear way.

Proposition 5.20 For every complex structure J € €, there exist regular x,y € Aé
such that Jc(x) = xi, Jc(y) = —yi. Elements x,y are uniquely defined up to
multiplication by elements of AE.

Proof Since Sp, (A, o) acts transitively on €, it is enough to prove the proposition for
the standard complex structure Jy.

Since Jo(a, b)T = (b, —a)T, we obtain (b, —a)T = (a, b)Ti if and only if b = ai,
ie.

x = (a,ai)l =(1,i)a,

where a € Ac arbitrary element. Fora € A, x is regular. Analogously, y = (i, 1)7a
where a € A(é arbitrary element. O

For a complex structure J € €, we denote by /7 the Ac-line yAc such that Jo(y) =
—yi.
Corollary 5.21 The map

F: ¢
J= 1

defines is an Sp, (A, o)-equivariant homeomorphism.

5.5 Precompact model
Lastly, we define the precompact model of the symmetric space of Sp,(A, o).

For this we consider the following Sp, (Ac, oc)-transformation that maps the indef-
inite form £ introduced in the previous section to the standard indefinite form /g;:

()

ie. a(T) [T = diag(—1, 1) = [hy]. Since T € Sp,(Ac, oc), it stabilizes the set
Is(we).

Definition 5.22 The space
B := DA, 60) i={c € AT | 1 —éc € (AL)4)
is called the precompact model.
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To justify this Definition, we prove the following Proposition:

Proposition 5.23 The map

d: TP — DAY, 6¢)
(a,0)T Ac > ab~!

is a homeomorphism. The set D(A, 5¢) is precompact on AE‘C.
In particular, b(AZ:C, oc) is a model of the symmetric space of Spy(A, o).

Proof Letv = (v1, v2)T € Is(wc) such that vAc € P and v = u + wi where (w, u)
is a symplectic basis of (A%, ). Then:

2 = h(v,v) = he (T, T7M0) = —Gc(x1)x1 + Gela)xs € (AX)4

where T—1v =: (x1, x2)T. Therefore, 6¢(x2)x2 = 6c(x)x] +2 € (Agc)+ because
(A%C)Jr is a proper convex cone. This means that x, is invertible, i.e. xo € Af,
(e, DT = (xix; ', DT € Is(we) and (¢, DT A = (T~ 'v)Ac.

(c. DT € Is(we)ifandonlyifc € AT, andh((c, DT, (c, DT) = 1—cc € (A%C)Jr.
Therefore, (T~ 1v) € D(A%, 6¢).

The map & is injective because T is injective and, if xlxgl = d(x1,x0) =
(yi,y)" = yiy; ' then (1,37 = (e xy s ie (x0T Ae =

1, )" Ac. .
The map @ is surjective because for every ¢ € D(A%C,é(c), (c, DTAc =

(T "w)Ac forv := T(c, DTV/2(1 —Ec)_%.Then v € Is(wc) and (v, v) = 2. There-
fore, v = u + wi for (w, u) a symplectic basis of (A2, w). Therefore, vAc € T~ 1.

The set DO(A“C, o) is precompact in A%‘C because it is a subset of the following
domain:

D(AY,60) i={a € AZ | 1 —aa € (AX)s0) € AT

that is compact by Proposition 2.99. O
Remark 5.24 The group 7! Spy(A,0)T < Spy(Ac, oc) acts on DQ(A%C, oc) by

Mobius transformations.

5.6 Connection between models

In this section, we consider Sp, (A, o )-equivariant homeomorphisms between the pro-
jective model, the upper half-space model and precompact model of the symmetric
space for Sp, (A4, o).

It is easy to check that the following map:

F: Py - U
(1, x2)T A = x5!
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isan Sp, (A, o)-equivariant homeomorphism. As we have seen in the Proposition 5.23,
the map

®oT P - DAL, 60) i={c € AL | 1 —éc e (AX)4).

defines another Sp, (A, o)-equivariant homeomorphism.
The maps F and ®o T ! can be seen as different coordinate charts for the projective
model B of the symmetric space for Sp, (A, o).

5.7 Compactification and Shilov boundary

In this section, we construct a natural compactification of the symmetric space of
Spy(A, o).
As we have seen, the precompact model D(A*, 6¢) is a precompact domain in

AZE, so taking the topological closure of D(AZC, G¢) in AZC, we obtain the compact-
ification

DAY, 60) == {c € AX | 1 —éc € (AX)=0)

of D(AZ, 5¢).

Definition 5.25 We call
S(AZ, 6¢) == {c € A | 1 —éc =0}

the Shilov boundary of the precompact model D(AC, 5¢).

Note, that §(A%C, 6¢) = Utac,6c) N AE . So the Shilpov boundary is a compact
subspace of D(A", 6¢).

Remark 5.26 The map &1 extends to the boundary of D(ASC, 6¢) and remains
continuous and bijective. Since the boundary is compact, it is a homeomorphism.
Therefore, we can see the boundary also in the projective model. In particular, we can
see the Shilov boundary there.

The next Proposition describes the Shilov boundary in the projective model.

Proposition 5.27 The preimage of the Shilov boundary S‘(AEC, oc) inP(Is(wc)) under
the map ® o T~ gives a compact subset of the boundary of the projective model. It
consists of all lines of the form x Ac such that x € Is(w) regular.

Prc_)of Note that the line / € Is(w) is of the form x Ac for some x € Is(w) if and only
ifl =1.
Assume ¢ € §(AEC, &c),i.e. &~ = ¢. Then

oor o2 )(9)-+((2) -+ -
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ie.forl = (c, DT Ac, 1 =1.
If we take a line x Ac for some x = (x1, x2)7 € Is(w), then

ci=(®oT N(xAc) = (x1 — ix2)(—ix; +x2) 7"
Since x € Is(w), c € AG

ce = (x1 +ix2)(ix) 4+ x2) 7 (x1 — ix2)(—ixg +x2) !
= i(x1 +ixa) (v —ix2) " (x1 — ix2) (—ixg +x2) 7!
i1 +ix)(—ixy +x2) 7" = (01 +ixg)(xy +ixg) T =1

Therefore, (& o T~ (xA) € S(AL, &¢). O

Corollary 5.28 The space P(Is(w)) of isotropic lines of (A2, w) embedded into
P(Is(wc)) as:

XA+ xAc

is a Shilov boundary in the projective model. This is a closed (even compact) orbit of
the action of Sp,(A, o) on the boundary of the projective model.

6 Models for the symmetric space of Sp, (A, 0) over complexified
algebras

The goal of this Chapter is to construct different models of the symmetric space for
Sp,(A, o) where A is the complexification of a real Hermitian algebra.

To simplify the notation in this and the next chapters, we denote by (Ag, or) a real
Hermitian algebra. By A = Ar ®r C, we denote the complexification of Agr. The
complex linear extension of o is denoted by o, the complex antilinear extension of
op is denoted by &.

Similar to the approach for real Hermitian algebras, where we considered their
complexification, we consider here quaternionifications of A (see Sect. 2.9).

As we noticed in the previous chapter, this construction works for every real closed
field. All the models we are going to describe are semi-algebraic sets, and they are
semi-algebraically isomorphic to each other. This allows us to define a natural semi-
algebraic structure on symmetric spaces of Sp, (A, o) for a complexification of every
semisimple Hermitian algebra (A, o) over any real closed field K.

6.1 “Space of quaternionic structures” model
Let (AR, or) be a Hermitian algebra with anti-involution. We consider the complex-
ification A := Ar ®g C. As we have seen in Corollary 2.80, (A, 6) is a Hermitian

algebra.
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Definition 6.1 A quaternionic structure on an right A-module V is an additive map
J:V — V such that J2 = —Id and J(xa) =Jx)aforallx € V,a € A.

Let V = A? and  be the standard symplectic form on A%, For every quaternionic
structure J on A2, we can define the form:

hy: A2 x A? > A
(x,y) = o(Jx),y)

that is o -sesquilinear. Indeed, for aj, ar € A
hy(xay, yaz) = o(J(xay), yaz) = w(J (x)ay, yaz) = o (a)hy(x, y)az.
Definition 6.2 The space:
¢ := {J quaternionic structure on A? | hy is a o-inner product}

is called the space of quaternionic structures.
We show that € is a model of the symmetric space of Sp, (A, o).

Definition 6.3 The standard quaternionic structure on A? is the map

Jo: A? —  A?
(x, ) = (¥, =)
Remark 6.4 h, is the standard & -inner product on A2.

Proposition 6.5 Let J be a quaternionic structure on A%. J € € if and only if there
exists a regular isotropic w € A% such that (J(w), w) is a symplectic basis.

Proof 1.LetJ € Candw € A2 some regular isotropic element. Since 4 ; (w, w) € A%,
we can normalize w so that 4 ;(w, w) = 1. Then:

o(J(w), J(w)) = hj(w, J(w)) =0 (h;(J(w), w)) =0 (0w, w)) =0,
o(J(w),w) =h;j(w,w)=1.

Therefore, (J(w), w) is a o-symplectic basis.
2.Letw € A% and (J(w), w) is a o-symplectic basis. Then,

hj(w,w) =w(J(w),w) =1
hy(J (W), J(w)) = o(J*(w), J (W) = o(J (W), w) = 1,
hy(J(w), w) = a)(Jz(w), w) = —w(w, w) =0.

Therefore, (w, J(w)) is an orthonormal basis for Ay, and in this basis, &y is the
standard o -inner product, so /; is an & -inner product. O
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Corollary 6.6 For every J € €, for every v € Is(w), J(v) € Is(w).

Theorem 6.7 Sp,(A, o) acts on € in the following way:
(g,J)n—)g_loJog.

This action is transitive. The stabilizer of the standard quaternionic structure is
KSpS(A, o).
In particular, € is a model of the symmetric space of Sp, (A, o).

Proof. 1. First, we prove that Sp,(A, o) acts on € by conjugation. Let J/ € €, g €
Sp,(A, o). Consider J' := g~ o J o g. Then

(J)Y¥ =g 'oJogogloJog=—1d.
So J' is a quaternionic structure on A”. For a regular x € A2,

hy(x,x) = o(J'(x), x) = w(g__ng(X), x) =w(Jg(x), gx))
=hy(glx), gx)) € AT.

Therefore, /s is an inner product on A% ie. J e¢€.

2. Second, we prove that the action is transitive. Let J € €, take a symplectic basis
(J(w), w) from the Proposition 6.5. Since Sp,(A, o) acts transitively on symplec-
tic bases, there exists g € Sp,(A, o) which maps the standard symplectic basis to
(J (w), w). That means, g maps the standard complex structure Jy to J. So the action
is transitive.

3. Finally, compute the stabilizer of Jy. g € Stabsp,(a,6)(Jo) if and only if g €
Sp,(A,0) and g € O(hy,) = Us(Ac, 0), i.e.

g €Spy(A,0)NUx(A, &) =KSp5(A,0). O

Remark 6.8 Since any quaternionic structure is a C-antilinear map, if we write the
action of Sp,(A, o) in the matrix form, we need to add the complex conjugation: i.e.
let [J] be the matrix for the quaternionic structure J, then

g7 oJogl=g""[Js.
6.2 Upper half-space model for Sp, (A, 0)

Let Ar be an Hermitian R-algebra with an anti-involution og. We assume A :=
Ar ®p C{I} to be the complexification of Ar. We denote here the imaginary unit by
I because the algebra A sometimes is already a complex algebra where we just forget
about its complex structure, so it may contain i as an element. In order to be more
precise, we do not use the letter i in our construction.

We denote by o the complex linear extension of or. We denote by ¢ the complex
antilinear extension of op.
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We denote by Ay the quaternionification of Ag, i.e. Ag = Ar ®r H{I, J, K}.
By our convention form the previous Sect. 2.9, we have A C Apy.
We extend o to Ajy quaternionic linearly, i.e.

op:=0x)+Jo(y)=0cx)+o(y)J =0cx)+ao(y)J.

So A]%? = Fixay (00) = A° @ A° J is well defined.

Every element of z € Agﬁ’ can be uniquely written as z = x + yJ where x €
A%,y € A®. We denote by Re(z) := x, Im(z) := y. We also have a quaternionic
conjugation on Ay givenbyz =x —Jy =x — yJ.

Definition 6.9 The upper half-space is
=z € AR | Im(z) € AT}

Proposition 6.10 The group Sp,(A, o) acts on i via Mobius transformation

2> M.z = (az+b)(cz +d)~", where M = (j Z)

transitively with the stabilizer of 1J equal to KSp5(A, o).
In particular, i is a model for the symmetric space for Sp,(A, o).

Proof First, we show that the action is well defined. Since Sp, (A, o) is generated by

matrices
a 0 0 1 1 b
0 o ')’ \=1 0)\0 1

where a € A*, b € A%, we proof M.z € il on these generators.

IfM := <(1) 117) withb € A%, then M.z = z+b € A} andIm(M .z) = Im(z) € AJ.

IfM = (_0] (1)> then M.z = —z7 ! ¢ AJ}. Let z = x + yJ, then it is easy to
check that z 7! = §71%b — bJ, where b = Im(M.z) = (Xy~'x + y)~1.
We need to check that b € AT. Since y € A%, we have y’1 € A9. Moreover,
iy lx e Aio for any x € A°. Because Ai is a convex cone, Xy lx + y € Ai.
- -1 5
Therefore, b = (xy 'x + y)~! € A%
. a 0 X _ a0 _
IfM = (0 o(a)_1> fora € A*,then M.z = azo (a) € Ay . Further, Im(M.z) =
alm(z)o(a) € A‘i because A‘j_ is closed under action by congruence of A*.
To prove the transitivity, we show that for every x € il there exists a Mobius
transformation that sends 1J to z. Let z = x 4+ yJ € 4 then y = u? for some
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u € (A°)*. Then

-1

=x+uocw) =x+yJ =z
Finally, let us find the stabilizer of 1J. An element M = (ccl 2) stabilizes 1J if
and only if
1J=M1J =(aJ +b)(c] +d) " = (aJ +b)(=é+dI)7'J.

So,a =d and ¢ = —b, i.e. M € KSp5(A, o). O

6.3 Projective model for Sp, (4, 0)

Now we define the projective model of the symmetric space of Sp,(A, o). For this,
we consider the following quaternionic extension of A:

Am = HI[A, Ag, i, j] = Ar ®r H{i, j, k}.

This space can be embedded into Mat,(A) as a subalgebra in the following way:

Ag — Mat, (A)

+ N ai an

ay+azj @ a)
The anti-involution 57 on Mat;(A) restricts to the following anti-involution on Ag:
oi(ar +azj) :=o(a1) —o(az)/,

whereay, a; € A. Because (A, o) is Hermitian, by the Proposition 2.78, (Mat,(A), ¢ T)

is Hermitian and, therefore, (A, o) is Hermitian as well.
We denote:

AT = Fixay (01), (A4 = 0u(AY)
where

Ou: Ag —> Aj
a — oi(a)a.

We also consider the following anti-involution on Ag:
oolar +azj) :=o(a1) +6(az)j,
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where aj, ap € A and extend w in the following way:
. (01
wn(x, y) = oo(x) (_1 0]

The following o7-sesquilinear form is an indefinite form on A]%I:

ey =aw’ (2 3)

Indeed,

h(y,x) =o1(n’ (_Oj 6) X = 0] <01 ! (_0] (J)) y) =o1(h(x, y)).

\T \T
Then in the basis e; = (\%, ﬁ) , ey 1= (\/Lj, —ﬁ) , the form h is represented

0\ . . .. . .
,1.e. h is a o1-sesquilinear indefinite form on AHZ_H.

by the matrix ( 0 1

Proposition 6.11 Sp,(A, o) acts on AIZHI preserving h. So we can see Sp,(A, o) as a
subgroup of O(h).
Proof Letx,y € A%, M € Sp,(A, o), then

h(Mx,My)zm(Mxﬂ(_Oj é)My=01(X)T5(M)TJ'<_01 é)My

=o1(x>Tjo<M>T(_01 é)My=m(x>T(_°j g)y=h<x,y>.

So M preserves h. i

Every quaternionic structure J on A” can be extended additively to a quaternionic
structure Jy on A]%I in the following linear way:

Ju(x(a +bj)) = J(x)(@+bj).

where x € A%, a,b € A.

Proposition 6.12 For every quaternionic structure J € €, there exist regular x,y €
A%HI such that Jy(x) = xj, Ju(y) = —yj. The elements x, y are uniquely defined up
to multiplication by elements of Aﬁ.

Proof Since Sp,(A, o) acts transitively on €, it is enough to prove the proposition for
the standard quaternionic structure Jy.
Since

Jolar +arj, by + baj)T = (by + baj, —ar — axj)7,
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we obtain
(b1 +brj,—ay —a )’ = (@1 +arj.bi +b2j)" j = (—az +arj, —ba+ b1 )’
if and only if a; = by, ap = —by, i.e.
x=(a+aj—a+ap =@+aj, ja+a)’ =ad4,j"a,
where a = a; + a»j € Ay arbitrary element. The element x is regular if and only if

a € A}y Analogously, y = (j, 1)"a where a = aj + ayj € A}j arbitrary element.
O

For a quaternionic structure J € €, we denote by /; the Ap-line yAp such that

Je(y) = —yJ.
We consider the spaces of isotropic elements and isotropic lines of (A%, wp):

Is(wg) := {x | x € A% regular, wg(x, x) = 0},
P(Is(wm)) := {xA | x € Is(wm)}.

We also consider the symmetric space of O(h):
Xogy == {xA | h(x, x) € (Af)+}.
Definition 6.13 We call the space
P = Xom) N PUs(wm))
the projective model.

To justify this Definition, we prove the following Proposition:

Proposition 6.14 The map

F:¢—> P
Jl—)lJ

defines is a homeomorphism that is equivariant under the action of Sp,(A, o).
In particular, *B is a model of the symmetric space of Sp, (A, o).

Proof 1. Show thatl; € Xow,. Since Sp,(A, o) acts transitively on €, it is enough to
check it the standard quaternionic structure Jy:

B DTG =01 1) (_Oj g) ({) = (=j.1) ({) =2¢ (A
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2. Show that [; € P(Is(w)). It is enough to prove it for Jo:

oG 0" G =an (2 0) (1) =1 (1) <o

3. Show that F is surjective. Let v = u + wj € Ap such that vAy € ‘P. Since
h(v,v) € (A%II)JF, we can renormalize v so that 4 (v, v) = 2. Since v € Is(w),

0=owg,v) =0, u)+ jo(w,w)j+ o, w)j+ jo(w,u)
=w(,u) —olw,w)+ (a)(u, w) + o(w, u)) j
So we have:
oW, u) =w(w, w)
o, w) =—w(w,u).
Moreover,

2=h(w,v) =h(u+wj,u+wj)=h(u,u)— jh(w,w)j+h(u,w)j— jh(w, u).
Notice, for u, w € A2, h(u,w) = w(u, w)j = jo(u, w). Therefore,

h(v,v) = (i, i) j + 0w, w)j — i, ©) + oW, u).
=2w(w, u) + 20 (w, w)j

So we have:

w(w,u) =1

o, u) =w(lw,w)=2~0

It means that (w, u) is a symplectic basis of (A2, ). We can define the following
quaternionic structure: J (#) = w, J(w) = —u. By the Proposition 6.5, J € €. Since

Ju() = Juw +wj) =w —uj = —u+wj)j = —vj,

we obtain F(J) = vA, i.e. F is surjective.

4. The map F is injective because if [; = [;; = yA for J,J' € € and some
y=y1+y2j € A4 Then J(y1) = J' (1) = —y2, J(»2) = J'(y2) = y1 and (y1, y2)
is a basis of A%, ie. J = J'.

5. Now, show the equivariance of F'.Let M € Sp,(A,0),J € Candu, w € AZ such
that w := J(u), J(w) = —u. Then MJM Y (Mu) = Mw, MIM Y (Mw) = —Mu.
That means that for v = u 4+ wj,

F(MIM™") = (Mv)Ag = M(vAy) = MF(J),
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i.e. F is equivariant with respect to the Sp, (A, o’)-action. O

6.4 Precompact model for Sp, (A, 0)

Now we define the precompact model of the symmetric space of Sp,(A, o). As we
have seen in the Proposition 5.14, the space X = Xo,,) for the standard o -indefinite
form on A%HI can be seen as a precompact domain

D(Am, 01) = {c € Au | 1 —o1(c)e € (Af)+}).

To see the symmetric space for Sp,(A, o) as a subset of this domain, we need an
Ap-linear transformation that maps / to the standard indefinite form. We can take the

following matrix:
_ (1 j>
IRVZAVERYA

Then oy (T)7 [h]T = diag(—1, 1) = [hy]and T~ € X. Notice, T € Sp,(An, o),
therefore it stabilizes the set of isotropic elements of (A%I, ).

Definition 6.15 The space
B 1= D(AR, 01) := D(Am, 01) N AR = {c € AR | 1 —o1(c)c € (AF)+}

is called the precompact model.
To justify this Definition, we prove the following Proposition.

Proposition 6.16 The image of T~ "B under the homeomorphism ®: X — D(Awm, o1)
is D(Aﬁ), 1) Whl;Ch is precompact in Aﬁ’.
In particular, D(A%?, o01) is a model of the symmetric space of Sp, (A, o).

Proof To characterize the image of the symmetric space for Sp,(A, o) inside
D(Am, o1), we remind that (x1, x2)7 € Is(w) if and only if oo (x1)x2 € AP There-
fore, (c, )T is isotropic if and only if oy(c) € AR, i.e. c € AF.

O(T™'P) = {c € AR | 1 —o1(c)c € (AF)+) S AR

The domain lo)(Aﬁ'_ﬁ’, o1) is precompact in Aﬂgf because it is a subset of the following
domain:

D(AR., 01) = {c € AP | 1 = 01(c)c € (AY)=0} € AR

that is compact by Proposition 2.99. i

Remark 6.17 The group T~! Sp,(A, o)T acts on DQ(A%I“, o1) by Mobius transforma-
tions.
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6.5 Connection between models

Consider a Hermitian algebra (AR, ogr) and its complexification A = Ar @r C. In this
section, we consider Sp, (A, o )-equivariant homeomorphisms between the projective
model, the upper half-space model and precompact model of the symmetric space for
Spy(4, o).

It is easy to check that the map:

F: T - U
(x1, x2)Am = xpx) !

is an Sp, (A, o)-equivariant homeomorphism.
As we have seen in the Proposition 6.16, the map

PoT P — DAY, 01) ={ce AR | 1 —a1(c)c € (AT)+).

defines another Sp, (A, o)-equivariant homeomorphism.
The maps F and ® o7 ~! can be seen as different coordinate charts for the projective
model B of the symmetric space for Sp, (A4, o).

6.6 Compactification and Shilov boundary

In this section, we construct a natural compactification of the symmetric space of
sz(A, o )
Let (A, o) be the complexification of a Hermitian algebra as before. The space

D(AR, 01) = {c € A | 1 —o1(c)e € (A7) )
is precompact. We take the topological closure of ﬁ(Agﬁ’, o1) in A%}):

D(A%’, o1) :={ce A%’ | 1 —o1(c)e € (Af)=0}-

Definition 6.18 We call
S(AR, 1) :={c € AR | 1 — a1(c)e = 0}

Shilov boundary of the precompact model ﬁ(A%), o1).

Note, that 5’(Aﬁ),01) is compact as a closed subspace of a compact space
D(AR, 01).

Remark 6.19 The map ®~! extends to the boundary of D(A]%? , 01) and remains contin-
uous and bijective. Since the boundary is compact, it is a homeomorphism. Therefore,
we can see the boundary also in the projective model. In particular, we can see the
Shilov boundary there.
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The next Proposition describes the Shilov boundary in the projective model.

Proposition 6.20 The preimage of the Shilov boundary S'(A%?, o1) in Is(wy) the map

® o T~! gives a compact subset of the boundary of the projective model. It consists
of all lines of the form x Ay such that x € Is(w).

Proof Note that the line ! € Is(wpy) is of the form x Agy for some x € Is(w) if and only
if n(/) =1 where n: Ay — Ap the following involution

n(cr+caj)i=cr—caj
for c1, c3 € Acy;)- Notice, 1 is an involution on Ay and
ai(oo(c1 +c2j)) =1 —c2j = —jnlcr +c2j)j.

Assume ¢ € S(AZ, 01),i.e. o1(c)"! = ¢, 00(c) = c. Then

. e (0 ) (MY _ j
(@oT (T o® (C))_(b(<j 0)( 1 >>_q)<<jn(c)>>

=—jn@) =010 ' =a1c)  =¢

ie. forl = (c, DT A, n() = 1.
If we take a line x A for some x = (x1, x2)7 € Is(w), then

ci=(®oT H(xA) = (x; — jx2)(—jx; +x2) 7"

Since x € Is(w) C Is(wn), ¢ € A} Further

o1(e)e = o1(0p(0))e = (F1 + jX2)(jF1 + %) (x1 — jxo) (—jxi +x2)7!
= (F1 + j8)(F + %) (GE + ) (=) (—jx1 +x2) 7!
= (&1 + jE) (=) (—jx1 +x2) 7 = (—jx1 + x)(—jx +x2) =1
Therefore, (& o T ) (xA) € S(AR, o1). O

Corollary 6.21 The space P(Is(w)) of isotropic lines of (A2, w) embedded into
PIs(wm)) as:

XA — xApg

is a Shilov boundary in the projective model. This is a closed (even compact) orbit of
the action of Sp,(A, o) on the boundary of the projective model.
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7 Realizations of classical symmetric spaces

In this section we apply the general construction of the different models of the sym-
metric space associated to Sp, (A, o) to give explicit models for the symmetric spaces
of the classical Lie groups that can be realized as Sp, (A, o). This applies in particular
to Sp(2n, C), GL(n, C) and O(4n, C).

We construct explicit examples of models of symmetric space for classical Hermi-
tian Lie groups of tube type. We will always denote by Ar a real Hermitian algebra,
the complexified algebra will be denoted by A := Ar ®r C. The quaternionification
of Ar will be denoted by Ap.

For the algebras Mat(n, R) and Mat(n, C), we denote by o the transposition. For
Mat(n, C), we denote by & the composition of transposition and complex conjugation.
For Mat(n, H{i, j, k}), we denote by g the anti-involution acting in the following
way:

oola + bj) = al + I;Tj,
and by o7 the anti-involution acting in the following way:
ol(a+bj):=a’ —bTj

fora, b € Mat(n, C{i}). In particular, we use the same notation in the case n = 1, i.e.
o is the complex conjugation on C.

To denote different models of the symmetric space for a group G that can be seen
as Sp, (A, o) for some real or complex A and anti-involution o, we use the following
letters: $1(G) for the upper half-space model, 3 (G) for the projective model, 2B(G) for
the precompact model and €(G) for the “space of complex/quaternionic structures”
model.

7.1 Algebra (Mat(n, R), 0) and its complexification

Let Ar := Mat(n, R) be the real algebra with the anti-involution ¢ given by transpo-
sition. Then

A = Mat(n, R) ®g C = Mat(n, C),
Sp,(Mat(n, C), o) = Sp(2n, C), Sp,(Mat(n, R), o) = Sp(2n, R),
Am = Mat(n, H), A% =Sym(n, C), AT = Herm™ (n, C),
00o(My + Maj) = o (My) + & (Ma)j = MT + MT j.
o1(My + Maj) = 6(My) — o (Ma)j = M] — MT j.

where M, M, € Mat(n, C).

AR ={M| + Myj € Mat(n, H) | M; € Sym(n, C), M, € Herm(n, C)}.

W Birkhauser



Symplectic groups over noncommutative algebras Page790f119 82

Example 7.1 The upper half-space model of the symmetric space of Sp(2n, C) is:

U(Sp(2n, C)) = {M; + M»J | My € Sym(n, C), M> € Herm™ (n)}
C Mat(n, H).

The Siegel upper half space of Sp(2n, R) is the real locus of this space:

USp2n, R)) = {M; + MyJ | My € Sym(n,R), M> € Sym+(n, R)}
C U(Sp(2n, C)).

Example 7.2 The precompact model of the symmetric space of Sp(2n, C) is :

B(Sp(2n, C))
= (M) + Maj € AR | 1d, —(M1 — M2j)(M + M3j) € Herm™ (n, H)}

The symmetric space for Sp(2n, R) can be seen as the intersection of B(Sp(2n, C))
with Mat(n, C{;j}):

B(Sp(2n, R))
={M1 + Mzj € Sym(n, C{j}) | Id, —(M; — M2 j)(M,
+M,j) € Herm™ (n, C{j})}
= {M e Sym(n, C{j}) | Id, —MM € Herm™" (n, C{j})} C B(Sp(2n, C)).

Example 7.3 We consider x, y € A?

0 Idy
w(x,y) = og(x)” <_Id 0 )y,

0 Id, j
h(xvy):Ol(x)T <_Idn] 8J>y

Then the projective model of Sp(2n, C) is:
PB(Sp(2n, C)) = {x Ay | x € A%, w(x,x) =0, h(x,x) € Herm™ (n, H)}.
The Shilov boundary corresponds in this model to the space:

$(Sp(2n,©)) = {x A | x € Afy, ®(x,x) =h(x,x) =0}
= (xA|x € A%, w(x,x)=0}.

The projective model for Sp(2n, R) can be seen as:
P(SpQ2n, R)) = {xAc(jy | x € ALy, o, x) =0, h(x, x) € Herm™ (n, C{j}))
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where C{j} C H and Ac(j; = Ar ®r C{j} = A.‘B(Sp(2n, R)) can be embedded
into PB(Sp(2n, C)) using the following injective map: for x € C{j}, xAcy(j; — xAmH.
The Shilov boundary corresponds in this model to the space:

S‘(Sp(2n, R)) = {xAcyy | x € AHZQ, w(x,x) =h(x,x) =0}
= (xAgr | x € A%, w(x,x) =0}.

We can also construct the projective model in terms of Lagrangians of H>". Consider
H?" as a right module over H. We can identify a line x Ay for a regular x € AI[%I with
a n-dimensional submodule of H?" in the following way:

L(xA) := Spany(xeq, ..., xe,) C H>"
where ¢; is the i-th basis vector (considered as a column) of the standard basis of H".
In fact, the map L is well-defined (does not depend on the choice of a regular x € xA)

and, moreover, it is a bijection.
We define two forms on H?": for u,v e H2",

- 0 1d,
o(u,v) = ao(u)T (_ d 0 ) v,

7 o T 0 den
h(u,v) :=o1(u) (—j 1d, L

If we take x € Is(w), then L(xA) € Lag(Hzn, ). Using the map L, we obtain the
following projective model for Sp(2n, C) = Sp,(A, 0):

PB'(Sp(2n, C)) = {I € Lag(H*", &) | Vv € 1\ {0}, h(v,v) > O}.
The Shilov boundary corresponds in this model to the space:
S(Sp(2n, C)) = {I € Lag(H*", ®) | Yv € [\ {0}, h(v, v) = 0} = Lag(C*", &).
The projective model for the symmetric space of Sp(2n, R) = Sp, (AR, or) is:
PB'(Sp(2n, R)) = {I € Lag(C{j}*", &) | Yv € [\ {0}, h(v,v) > 0}.
It can be embedded to the projective model of Sp(2n, C) by the map:

Lag(C{j}*", ®) — Lag(H*", &)
I —  Spang(/) °

The Shilov boundary corresponds in this model to the space:

S(Sp(2n, R)) = {I € Lag(C{j}*", ®) | Yv € [\ {0}, h(v,v) = 0} = Lag(R™", &).
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Example 7.4 Now we construct the “space of quaternionic structures” model and the
“space of complex structures” model. The quaternionic structure on A can be seen as
a2n X 2n-matrix J acting on AZas J(x) = Jx forx € A%. Since J(J(x)) = JJX =
—x, JJ = —1d,.

The corresponding o -sesquilinear form is then

_ 0 1Id,
i@ y) = o @), y) =7 (_ M, 0 ) y

So we obtain the “space of quaternionic structures” model for Sp(2n, C) :

0 Id,

¢(Sp(2n, C)):= {J € Mat(2n,C) | J” <—Idn 0

) € Herm™ (n, ©), Jf:—Id}.

The space of complex structures on A]% can be seen as a subspace of €(Sp(2n, C))
because every complex structure can be extended in the unique way to the quaternionic
structure on A2 in the following way: for a complex structure J we define

Joe(x +yi) =J(x) = J()i
where x,y € Agr. So we obtain the inclusion of the space of complex structures

for Sp(2n, R) into the space of quaternionic structures for Sp(2n, C) as subspace of
quaternionic structures fixing A%{ C A%

0 1d, " 2
—1d, O)ESym n,R), J ——Idzn}

—{J € &(Sp2n, C)) | J € Mat(2n, R)}.

¢(Sp(2n, R)) := {J e Mat2n,R) | JT (

7.2 Algebra (Mat(n, C), (_)') and its complexification

In this section, we consider the algebra Ar := Mat(n, C{I}) with the anti-involution
o given by transposition and complex conjugation. Then

A = Mat(n, C{I}) ®r C{i},
Spy(Ag, &) = U(n, n),
Spy(A, 6 ®1d) = GL(2n, C).
Ag = Mat(n, C{I}) ®r H{i, j, k}.

Example 7.5 First, we construct the upper half-space model. In the Sect. B.1.1, we
studied the following C{/}-algebras isomorphism:

x : Mat(n, C{i}) ®r C{I} — Mat(n, C{I}) x Mat(n, C{I})
a+ bi — (a+bl,a—bl)
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where a, b € Mat(n, C{I}).
We have seen,

x(Ar) = x(Mat(n, C{i})) = {(m, m) | m € Mat(n, C{I})},
x (A% = (m, mT) | m € Mat(n, C{i})} = Mat(n, C).
¥ (A°®%) = Herm(n, C{I}) x Herm(n, C{I}),
x(A®%) = Herm ™t (n, C{I}) x Herm ™" (n, C{I}).

So we have the following model for the symmetric space for GL(2n, C):

U(GL2n, C)) = {(ZlTl) " (mlz) J‘ mi1 € Mat(n, C{I}), } c

1 mo) mia, myy € Herm™ (n, C{I})
C H[Mat(n, C{I}) x Mat(n, C{1}), x Mat(n, C{i})), (I, I), J].

Since Ag = Ap N A°®! = Ap N A°®% = Herm(n), we obtain the symmetric space
for U(n, n) is:

(U, n)) = {("_“) + (’"2) : ‘ my € Herm(n, C{1}),

i iy ) | my € Herm* (n, (C{I})} C U(GL2n, ©)).

To see UU(U(n, n)) as a subset of Mat(n, C{I}) x Mat(n, C{I}), we have to identify J
and (I, 1) = x(1 ® I), so we get

UU(n, n))
= {(m1 +mal,my +mal) | m; € Herm(n, C{I}), m> € Herm™ (n, (C{I})}
C Mat(n, C{I}) x Mat(n, C{I}).

In a pair (m + my1, my + myI) for m; € Herm(n, C{I}), m> € Herm™ (n, C{I}),
the second component is completely determined by the first one. It is easy to see,
because m; 1 is skew-Hermitian and m| + my 1 corresponds to the decomposition of
an element from Mat(n, C{I}) in Hermitian and skew-Hermitian part. Therefore,
and m, are well-defined by m| + m;I. Therefore, we can identify

UUm, n)) = {m; +myl | m; € Herm(n, C{I}), m; € Herm+(n, C{I})H}.

Example 7.6 Now we construct the precompact model. We use the map i from the
Sect. B.1.2 to identify Ay with Mat(2n, C).

¥ : Mat(n, H{i, j, k}) ®r C{I} — Mat(2n, C{i})

q1+pii g+ p2i>

+q2)) + +p2j)l — _ -z .
(g1 +q2j) + (p1 + p2Jj) <—q2—pzl Q1+ pri

where q1, g2, p1, p2 € Mat(n, C{i}).
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The anti-involution 6 ® op on Mat(n, C{I}) ®r H{i, j, k} induces the following
anti-involution

Yo (G ®op) oy

) 0Idy .r(01d
on Mat(2n, C): m — (Id O>m <Id O).Therefore,

J(ATE) {m € Mat(2n, C{i}) 'm _ (1(21 Ig) o7 (1% 151)} |

Similarly, the anti-involution ¢ ® o on Mat(n, C{I}) ®gr H{i, j, k} induces the fol-
lowing anti-involution

Yo ®o)oy !

on Mat(2n, C): M +— M7T and so W(Af_ﬂ@”') = Herm(2n, C). So we obtain the
following precompact model for the symmetric space of GL(2n, C):

B(GL(2n, C)) = (M € ¢(AZ®) | 1dy, —M" M € Herm™ (21, C)}.

To see the precompact for U(n, n) as a subspace of B(GL(2n, C)), we have to intersect
of with ¥ (Mat(n, C{I}) ®r C{,j}). We remind from the Sect. B.2.2

Y (Mat(n, C{1}) ®r C{j})
= {m € Mat(2n, C{i}) ‘ m=— (—OId I(()i) m <—OId I(;i)} .

Since

Y (Mat(n, C{I}) ®r C{j}) N W(A%WO) = {(_ab z>

a,b € Herm(n, (C)} ,

we obtain:

_(a b Id, —a®> — b* ba—ab
BU@, m) = {(—b a) ‘ ( ab —ba 1d, —a?® — b?

C ‘B(GL(2n, C)).

) € Herm™* (2n, (C)}

Under the map yx fromthe Sect. B.1.1, A can be identified with Mat(n, C) x Mat(n, C),
so we obtain the following precompact model for U(n, n):

B(U(n, n))
={(M,M") | M € Mat(n, C), Id, —M" M € Herm™ (n, C), 1d,,
—MM" € Herm™ (n, O)}.
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The second component if the pair (M, M T)_is determined by the first one. Moreover,
ifId, =M™ M € Herm™* (n, C) then Id,, —MMT" € Herm* (n, C). Therefore, we can
identify:

B(U(n, n)) = (M € Mat(n, C) | Id, —M" M € Herm™ (n, C)}.

Remark 7.7 The description for the precompact model of the symmetric space of
U(n, n) seenas Sp, (Mat(n, C), &) agrees with the description for the projective model
of the symmetric space of U(n, n) seen as O(hy;) for hy; the standard indefinite form
(see Sect. 5.3).

Example 7.8 We now construct the projective model. Under ¥, the anti-involution
0 ® og on Mat(n, C{I}) ®gr H{i, j, k} induces the following anti-involution

o' =Y o(E®ag) oy

0 Id,

. 0 Idp\ 7
on Mat(2n, C): M +—> (Idn 0 )M (Idn 0 ) Therefore,

F®00\ _ 0 Id,\ ~7( 0 1d,
Y (Ag )_{MeMat(Zn,(C)‘(Idn 0>M <Id,, 0 .

Similarly, the anti-involution ¢ ® o on Mat(n, C{/}) ®gr H{i, j, k} induces the fol-
lowing anti-involution

" =Yo(G®a)oy !

on Mat(2n, C): M — M7 and so 1//(A%I®U‘) = Herm(2n, C).
Further, for x, y € (4")?

7 T 0 Id;,
o, y) =0’ () (_Id2n L
01d, 0 0 Id, 0
_ (0 1)) 7|14y 0 0 0 0 Id,
=\, o o 0 ||l-1, 0 0 0
Id, 0 0 —Id, 0 0
0 0 0 Id,
_ (0| O 0 14 0
= \1d, 0 0 -1, 0 0|
~d, 0 0 0
_ T 0 Idy, i _ =T 0 Idy, i
hx, y) = 07(x) (—Idz,,i 0 )Y=% \“1dpi 0 )7
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Note, x € Is(w) if and only if x € Is(w") where

0 0 0 Id,
1 o o0 14,0
0 —Id, 0 0
~d, 0 0 0

o' (x,y) =X

We obtain the projective model for GL(2n, C):
P(GL2n, C)) = {xA" | x € (A)?, &'(x,x) =0, h(x,x) € Herm ™ (2n, C)}.
The Shilov boundary corresponds in this model to the space:
S(GLQ2n, C)) = {xA | x € (A)?, &' (x,x) = h(x, x) = O}.

The projective model for U(n, n) can be seen as a subspace of P(GL(2n, C)) in
the following way. As we have seen in the Sect. B.2.1,

V(AR ®g C{j}) = {( qp 5) ‘p, q € Mat(n, C{i})}

= {m € Mat(2n, C{i}) ‘m - <—(I)dn I?;z) m (—(I)dn Ic(l)n)} .

Therefore, if we define

0
_|-1, 0 0 1d,
o) = 0 1d, |* <—Idn 0 )

—-1d, 0
for x € (A")2. We obtain
PUn,n)) = {xA" € PGL2n, 0)) | x € (AN, 8(x) = x)
We can also see the projective model for U(n, n) in another way. We consider

the isomorphism x from the Sect. B.1.1 identifying Mat(n, C{I}) ®r C{i} with
Mat(n, C{i}) x Mat(n, C{i}) =: A”. Then the anti-involution induced by & ® Id

xo (@ ®Id)oy!
on Mat(n, C{i}) x Mat(n, C{i}) acts in the following way:

T T
(my, my) — (m2 , my ).
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The involution induced by 0 ® o
Xo(@®a&)ox !
on Mat(n, C{i}) x Mat(n, C{i}) acts in the following way:
(m1,m2) v (i, m3).
Note,
(A")? = Mat(n, C{i})* x Mat(n, C{i})>.

We take x1, x2, y1, y2 € Mat(n, (C{i})z, then we can define

w((x1, x2), (¥1, ¥2))

= Xo (O_— ® Id) o X_l(xla X2) (-(Id,? Idn) (Idnbld’l)) (yla }’2)

r( 0 I, rf( 0 1d,
{2\, o)\ w4, o))
N 0 Id. i\ - 0  Idi
h((x1,x2), (y1, 2)) = (xlT <_Id P )YI,sz (_Id . )yz>.
n n

We obtain the projective model for U(n, n):

x1, %2 € Mat(n, C{i})?, &(x1,x2) =0,
h(x1, x1), h(xa2, x2) € Herm™ (n, C)

PU®,n) = {(xl,xz)A”

where &(x1, x2) = x| <—(I)d Ig") ya, hix,y) i= il (_I(()l ; Idg l) y1. Since
n n

@ is non-degenerate, the line x, Mat(n, C{i} is uniquely defined by x;.

Let us check that for the pair (xq, x2) such that @(xy, x3) = 0, ft(xl,xl) €
Herm™ (n, C), we have always /i (x2, x2) € Herm™ (n, C). As we have seen in the
Sect. 5.6, we can always choose x| = (m1, 1), xo = (m2, 1)7. Then

(x1,x2) =mi —my =0,

h(xi,x1) = i(m] —m) € Herm* (n, C).
These two conditions imply
h(xz, x2) = i) —my) =iy —mT) =ioa! —m))" € Herm™ (n, C).
Therefore, we can write the following identification:
P(Un, n)) = {x Mat(n, C{i}) | h(x, x) € Herm™ (n, (C)} .
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The Shilov boundary corresponds in this model to the space:
$(Un, n)) = {x Mat(n, C{i}) | ACx, x) = 0] .
To construct the projective model in terms of Lagrangians, similarly to the Exam-
ple 7.3, we can identify the space of A’-lines of (A’)> with the space Gr(2n, C*") of
2n-dimensional subspaces of C*" by the rule:

L(xA’) := Spang(xey, ..., xe)

where ¢; is the i-th basis vector (considered as a column) of the standard basis of C2".
We define two forms on C*': for u, v € C*",

0 0 0 Id,
- T 0 0 Id, O
w(u,v) :=u 0 —1d, 0 0 v,
—1d, 0 0 0
~ T 0 i Idy,
h(u,v) :=u <—i 1y, 0 v

The projective model for the symmetric space of GL(4n, C) = Sp,(A, o) can be seen
as the following space:

2 (GL(4n, C)) = {l € Lag(C*", &) | Yv € 1\ {0}, &(v,v) > O}.

where Lag(C*", ®) is the space of all maximal isotropic subspaces of C** with respect
to @. The Shilov boundary corresponds in this model to the space:

S(GL(4n, C)) = {I € Lag(C*, &) | Yv € 1\ {0}, A(v, v) = O}.

We can see the the projective model for the symmetric space of U(n,n) =
Sp, (AR, or) as a subspace of P(GL(4n, C)):

P'(Un, ) = {1 € P(GLMAn, C)) | 8'() =1}

where
5 (C4n — (C4n
0 Id,
. —1d, O 0
v . 0 1d, v.
—1d, 0O

We can also see another projective model for the symmetric space of U(n, n) =
Sp, (AR, 0) if we identify again A = Mat(n, C) ®r C with Mat(n, C) x Mat(n, C) =:
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A’ by the map x form the Sect. B.1.1.

x : Mat(n, C{I}) ®gr C{i} — Mat(n, C{i}) x Mat(n, C{i})
a+ bl — (a + bi,a — bi)

As before, we can identify every line x A’ C (A’)? with pair of n-dimensional sub-
spaces of C*". We define two forms on C>: for u, v € C*"

- T 0 1d,
o(u,v) :=u (—Id,, 0>U,

~ T 0 Id, i
h(u,v) :=u (—Id,,i 0 )?

The pair (/1, [») of n-dimensional subspaces of C" is called w-orthogonal if for all
v €ly,u € lp, o(v,u) = 0. So we can see the projective model of the symmetric
space for U(n, n):

B (U(n, n)) = {(l, l)@-orthogonal pair | Yu € I; Ul \ {0}, fz(u, u) > 0}.

Since  is non-degenerate, the space /5 is completely determined by /1. And as we
Igave seen for P(U(n, n)), if forall u € [1 \ {0}, h(u, u) > 0, then for all u € I, \ {0},
h(u,u) > 0. Therefore, we can identify

P (U, n)) Z{l € Gr(n, C*) | Yu € 1\ {0}, h(u,u) > 0}.
The Shilov boundary corresponds in this model to the space:
SUn, n) Z{l € Gr(n, C*") | Yu € 1\ {0}, h(u,u) = O0}.

Remark 7.9 The description for the projective model of the symmetric space of U(n, n)
seen as Sp,(Mat(n, C), o) agrees with the description for the projective model of the
symmetric space of U(n, n) seen as O(hy,) for hy, the standard indefinite form (see
Sect. 5.3).

Example 7.10 Now we define the “space of quaternionic structures” model and the
“space of complex structures” model. We use the map x from the Sect. B.1.1,

x : Mat(n, C{I}) ®r C{i} — Mat(n, C{i}) x Mat(n, C{i})
a—+bl — (a + bi,a — bi)

toidentify A with A’ := Mat(n, C{i}) xMat(n, C{i}). The involution Id ®¢& is mapped
under x to the involution

(my, my) — (Mo, mp).
on Mat(n, C{i}) x Mat(n, C{i}).
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If we take a quaternionic structure J on A” then we define

J’::XoJoX_l.

If we see J' as a pair (J1, J2) of 2n x 2n complex matrices then J| Jo = —Idy, because

for (m, m2) € (A))? = Mat(n, C{i})® x Mat(n, C{i})2,

J'(m1, my) = (J1, L) (o, my) = (Jima, Jomy),
—(m1,mp) = (J)2(my, ma) = (J1 a1, JaJ1i2).

The anti-involution induced by ¢ ® Id

xo(@G ®Id)ox !

on Mat(n, C{i}) x Mat(n, C{i}) acts in the following way:

T T
(my, mp) — (m2 , My ).

We take the standard symplectic structure on (A2 for x1, x2, y1, y» € Mat(n, C{i})

0

(Id,, Idy)

@((x1,x2), (1. y2)) = x 0 (G@Id) 0 x ™ (x1, x2) (_adn Wy 0 )(yl,yz)

(s 0 1, r( 0
_(x2 (—Idn 0>y1’x2 (—Id,,

Id,

0)”)‘

For a quaternionic structure on (A’ )2 seen as pair of matrices (J1, J2), we define

higy, ) ((x1, x2), (1, ¥2))

= ((Jm)T (_?d I‘é) yi. (i) (_0

(-, O Id, r,7( O
_(lel (—Idn 0 )|y,

Id,

0

1d,
0 Y2

Idn> y2> .

The “space of quaternionic structures” model for GL(2n, C) is then:

Ji, J» € Mat(2n, C), J1J» = —Ida,,

¢(GLQ2n, ©)):={ (J1, Jo) J]T< 0 Idn) ]2T<
-4, o)

0

Since J; J, = — Idy,,, by given Jj such that JIT ( d
- n

can calculate J, = —J_fl. Then

(0 W\ _ (0 1) _ 0
2\, o)™ 7\, o) 7T \\-14,

Id,

- Idn

0

Id,
0

Id,

0 ) € Herm™ (2n, C)

) € Herm™ (2n, C), we

-1
) J_1T> € Herm™ (2n, C)
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if and only if

0 Id,\ -7 i
(_ d, 0 > Ji € Herm™ (2n, C)

if and only if

_T 0 Idn +
Ji <—Idn 0 ) € Herm™ (2n, C).

Therefore, we can identify

0 Id,

¢(GL(2n, C)) = {J € Mat(2n, C) ‘ " (_Idn 0

) € Herm™ (2n, (C)} .

In this presentation of the symmetric space, GL(2n, C) acts on it in the following way:

P! 0 Id,\ -7 0 1d,
(8, /)~ —¢ J(—Id,, 0>g <—Idn 0)

for g € GL(2n, C).
Since

x(Ar) = {(m,m) | m € Mat(n, C{i})},

the “space of quaternionic structures” model for U(n, n) = Sp, (AR, o) can be seen
as a subset of €(GL(2n, C)) stabilizing x (AR). (J1, J2) € €(GL(2n, C)) stabilizes
x (Ar)? if and only if for all m € Mat(n, C{i})?,

(J1, L) (m, i) = (Ji(m), Jo(m)) = (m', "),
for some m’ € Mat(n, (C)z, i.e. J1 = J,. Therefore,
¢Um,n)) ={(J,J) € €GL(2n, C))}.
We can also see €(U(n, n)) directly as the space of complex structures on A]Iz{:

0 Id,

¢U(n, n)= {J € Mat(2n, C) ‘ JT (_ W, 0

> € Herm™(2n, C), JJ = —Idgn} .
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7.3 Algebra Mat(n, H) and its complexification

In this section, we consider the algebra Ar := Mat(n, H{I, J, K}) with the anti-
involution o7 given by transposition and quaternionic conjugation. Then

A = Mat(n, H{I, J, K}) ®r C{i},
Sp, (AR, 01) = SO*(4n),
Sp,y(A, 01 ® Id) = O(4n, C),
Ay = Mat(n, H{I, J, K}) ®r H{i, j, k}.

Example 7.11 First, we construct the upper half-space model. In the Sect. B.1.2, we
studied the following isomorphism of algebras:

¥ Mat(n, H{I, J, K}) ®r C{i} — Mat(2n, C{I})

. g1+ pil g+ p2l
+qgrJ) + + prJ)i — Z o _ .
(g1 +q2J) + (p1 + p2J) (—qz—pzl q1+p11>

where q1, g2, p1, p2 € Mat(n, C{I}). This is a C{i }-C{[ }-isomorphism, i.e. ¥ (xi) =

Y (x)I for x € Mat(n, H{I, J, K}) ®g C{i}.
We remind, ¥ (Id, ®i) = Idy, I and

V(AR) = yMat(n, H{1, J, K})) = {(i}z Zf) ‘C]lv g2 € Mat(n, C)} :

Under v, the anti-involution o ® Id on Mat(n, H{/, J, K}) ®g C{i} indices the
following anti-involution

o' =vo(o;QId)oy!

on Mat(2n, C{I'}) = Mat, (Mat(n, C{I})):

o (0 1) r[ 0 Id,
o (m) = <—Idn o)m <—Id,, o)

for m € Mat(2n, C{I}). So we have:
o ®1dy _ 0 1d, T 0 1d,
Y (AN®l) = {m eMat(2n,C{I})‘m =— (_Idn 0 )m (_Idn 0 )}
= sp(2n, C{I}).

We consider the anti-involution o1 ® & on Mat(n, H{/, J, K}) ®g C{i} where o acts
on C{i} by the complex conjugation. It induces the following anti-involution

G=vo(c;®6) oy !
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on Mat(2n, C):
&(m) =m!.
So, as expected, (Mat(2n, C{I}), 6) is a Hermitian algebra and

Y (AT®7) = Herm™ (2n).

Since ¥ (1 ® i) = Idy, I, we have to do quaternionification with respect to Id 7. So
the symmetric space is:

U(O4n, C)) = {My + Maj | My € sp(2n, C), M, € Herm™ (2n)}
C H[Mat(2n, C{I}), v Mat(n, H{I, J, K})),Id2, I, j].

Since AR = A%®1d N A9®9 the real locus of this space is the symmetric space of
SO*(4n):

U(SO* (4n)) =
= (M + Msj | M € sp(2n, C) N Herm(2n), M> € sp(2n, C) N Herm™ (2n)}
C 4(0(n, C)).

After identification j and Idy, I, we obtain it as a subset of Mat(2n, C{I}):

U(SO*(4n))
={M| + MyI | M € sp(2n, C) NHerm(2n), M, € sp(2n,C) N Herm™ (2n)}
C Mat(2n, C{I}).

Example 7.12 Now we construct the precompact model. We use the map
¢: Mat(n, H{I, J, K}) ®r H{i, j, k} — Mat(4n, R)

from the Sect. B.1.3 to identify Ay with Mat(4n, R) defined on generators of Ap as
follows:

0 a 0 0 0 0 a 0
a0 0 o . 0 0 0 a
Pa® =149 o 0 —a| *@®D=|_ o o ol
0 0 a 0 0 —a 0 0
0 0 0 a 0 —a 0 0
0 0 —a 0 a 0 0 0
padb =14 4 o o ?@WeD=1g o o |
4 0 0 0 0 0 a 0
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0 0 —a 0 00 0 -a
0 0 0 a 00 —a 0
patel = o o ol *@keb=1, , o o
0 —a 0 0 a 0 0 0

where a € Mat(n, R).
As we have seen, the anti-involution o1 ® o corresponds under ¢ to the following
anti-involution on Mat(4n, R): M — —EMT E where

0 0 0 I,
e[ o o -1, o
=Tl o W o o

~1d, 0 0 0

The anti-involution o1 ® o7 corresponds under ¢ to the transposition on Mat(4n, R).
So we obtain the following precompact model of the symmetric space of O(4n, C):

B(O@n,C)) ={M € qb(A%f@“") | 1 —MTM e Sym™ (4n, R)}
where
qﬁ(Aﬁ@“") = {M e Mat(4n,R) | M = —EMT E} = sp(4n, R).
To see the precompact model B (SO*(4n)) for the symmetric space of SO*(4n) as a
subspace of ‘B(O@4n,C)), we have to intersect B(O(4n,C)) with

¢ Mat(n, H{I, J, K}) ®r C{j}). We remind from the Sect. B.2.2:

— {m e Mat(@n,R) | M = —¢(Id, ® )M (Id, ® )} .

Therefore, we obtain:
B(SO*(4n)) = {M € BOM@n,C)) | M = —¢(d, @ j)Mp(d, ®j)}.

Under the map ¥ from the Sect. B.1.2, we can identify A with Mat(2n, C). The
anti-involution o7 ® Id corresponds to the following anti-involution on Mat(2n, C):

o 0 Wy (0 Id
" ~1d o)™ \-1d o)
Therefore, ¥ (A% ®14) = sp(2n, C).
The anti-involution o1 ® o corresponds to the following anti-involution on

Mat(2n, C): M — M7 . Therefore, we obtain the precompact model for SO*(4n):

B(SO*(4n)) = {M € sp2n,C) | 1 — MT M € Herm* (2n, C)}.
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Example 7.13 Now we construct the projective model. As we have seen, the map ¢
defines an R-algebra isomorphism:

¢: Ag — Mat(4n,R) =: A’

Moreover, the anti-involution o1 ® og corresponds under ¥ to the following anti-

involution o) on Mat(4n, R): oj(M) = —EM T'E where
0 0 0 1d,

o o -w o

= 0 1d,, 0 0

—1d, O 0 0

The anti-involution o1 ® o7 corresponds under ¢ to the transposition on Mat(4n, R).
Further, for x, y € (4’)?

0 Id
w(x,y) = op(x)" <—Id4 5”) y
n

0 0 Idy O
:—ExT<EO) 0 0 0 Iy,
08)|-1dw 0 0 0
0 —
0
0

Idy, O 0

0 0 0 0 0 0 Id,
0 0 0 0 0 ~1d, 0
0 0 0 0 0 I1d, O 0
I 0 0 0 —1d, O 0 0
=7 1o 0 0 —Id, O 0 0 o |’
0 0 1Id, O 0 0 0 0
0 —1Id, O 0 0 0 0 0
d, 0 0 0 0 0 0 0
0 0 0 0 0 0 1Id, O
0 0 0 0 0 0 0 Id,
0 0 0 0 —1d, O 0 0
o rlo o 0 0 0 —-1d, 0 0
hoy)y=x"10 0o _w, o 0 o o o]l”
0 0 0 —I1d, O 0 0 0
d, 0 0 0 0 0 0 0
0 Id, 0 0 0 0 0 0
By definition of &, we use that
0 0 1Id, O
1o 0 0 Id,
~1d, 0 0
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Note, x € Is(w) if and only if x € Is(w") where

O 0 0 0 0 0 0 1d,
O 0 0 0 0 0 —Id, 0
O 0 0 0 0 Id, 0 0
, ;1o o o o —-Wd,0 0 o
@ =x 9 0 -, 0 0 o o |
0 0 d, 0 O O 0 0
0 -d, 0 0 0 O 0 0
d, 0 0 O 0 0 0 0

So we obtain the projective model for the symmetric space of O(4n, C):
P(O@4n,C)) = {xA' | x € (A)?, &/(x,x) =0, h(x,x) € Sym™ (4n, R)}.
We can see the Shilov boundary in this model as the space:
S(O@n,C)) = {xA' | x € (A)?, o/(x,x) = h(x,x) =0}

The projective model for SO* (4n) can be seen as a subspace of P(O(4n, C)) in the
following way. As we have seen in the Sect. B.2.2,

Y (Ar ®r C{j}) = {m € Mat(4n,R) |m = —¢(1 ® jlmep(1 ® j)}.
Therefore,
P(SO*(4n)) = {xA" € P(GL2n, ) | x = —p(1 @ jHxp(1 ® j)}.

To see another projective model for the symmetric space of SO*(4n), we remind
that A = Mat(n, H) ®g C is to Mat(2n, C) =: A” isomorphic under the map v
from the Sect. B.1.2. The anti-involution o7 ® Id corresponds under this map to the
anti-involution ¢’ on Mat(2n, C) given by:

oo (0 1)\ (0 Id,
olm) = <—Idn 0)’" (—Id,, 0)'

The anti-involution o1 ® ¢ corresponds under ¥ to the complex conjugation composed
with transposition on Mat(2n, C).
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We define for x, y € (A”)2,

0 Id,

Y B U ( 0 Id2n>y
’ 0 0 Id, —Id, O
—Id, 0
0 0 0 Id,
_ |0 0 -1 o0
0 —Id, 0 0 ’
Id, 0 0 0

~ - 0 Idy, @
T 2n
h(-xs y) =X (_Idznl O )y

Then the projective model of the symmetric space for SO*(4n) can be seen as:
P(SO*(4n)) = {xA” | x € (A”)%, h(x, x) € Herm™ (2n, C)}.
We can see the Shilov boundary in this model as the space:
S(SO*(4n)) = {xA” | x € (A")?, h(x, x) = 0}.
Now we construct the projective model in terms of isotropic subspaces. As before,
we identify using the map L the space of A’-lines and the space Gr(4n, R¥") of 4n-
dimensional subspaces of R%":

L(xA’) := Spang(xey, ..., xea)

where ¢; is the i-th standard basis vector of R*'. We define two forms on R3": for
8n
u,v e R,

O 0 0 0 0 0 0 Id,
0O 0 0 0 0 0 —Id, O
0O 0 0 0 0 I, 0 0
N 7lo o o o -1, o o o0
vy =w o o o _@, o o0 o0 0"
0 0 Id, 0 O 0 0 0
0 -1d, 0 0 O 0 0 0
d, 0 0 0 o 0 0 0
0 0 0 0 0 0 1, O
0 0 0 0 0 0 0 Id,
0 0 0 0 —-1d, 0 0 0
. ;1o o o 0 0 —Id, 0 0
hwv):=uw" Ao o _m@, o 0 o o o]|"”
O 0 0 —Id, 0 0 0 0
d, 0 0 0 0 0 0 0
0 I, O 0 0 0 0 0
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The space of @-isotropic vectors of R¥ is denoted by Is(®). Then the projective
model of the symmetric space for O(4n, C) can be seen as:

B/ (O(4n, C)) = {l € Lag(R¥, @) | Vx € [\ {0}, h(x, x) > 0}

where Lag(R%", @) is the space of all maximal @-isotropic subspaces of R%".
We can see the Shilov boundary in this model as the space:

S(0(4n, C)) = {l € Lag(R®, &) | Vx € 1\ {0}, h(x, x) = O}.

The projective model for the symmetric space of SO*(4n) can be seen as a subspace

of P(O(4n, C)):

P'(SO*(4n)) = {l € P(OAn,C)) | 8(1) =1},
where

5:R8 R8"

¢(1d, ®j) 0
H( 0 ¢<Idn®j>>”‘

To see another projective model for the symmetric space of SO*(4n), we remind
that A = Mat(n, H) ®g C is to Mat(2n, C) =: A” isomorphic under the map v
from the Sect. B.1.2. The anti-involution o1 ® Id corresponds under this map to the
anti-involution ¢’ on Mat(2n, C) given by:

o (0 14\ 7[00 Id,
o (m) = <—Idn o)’" <—Idn 0)'

The anti-involution o1 ® ¢ corresponds under ¥ to the complex conjugation composed
with transposition on Mat(2n, C).

To construct the projective model in terms of Lagrangians, as before, we identify
using the map L the space of A”-lines and the space Gr(2n, C*") of 2n-dimensional
subspaces of C*:

L(xA") := Spang(xey, ..., xex)

where ¢; is the i-th standard basis vector of C%'. We define two forms on R3": for
u,v € RS
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Id,

7 =T 0
h(u,v) :=u <_ 1d, i

Id2n
0 ) v

Then the projective model of the symmetric space for SO*(4n) can be seen as:

P (SO*(4n)) = {I € Lag(C*, ) | Vx € [\ {0}, i(x, x) > 0}

where Lag(C**, @) is the space of all maximal @-isotropic subspaces of C*".

We can see the Shilov boundary in this model as the space:

S(SO*(4n)) = {I € Lag(C*", @) | Vx € 1\ {0}, h(x, x) = O}.

Example 7.14 Now we construct the “space of quaternionic structures” model and the

“space of complex structures” model.

We use the map v from the Sect. B.1.2, to identify A with A’ := Mat(2n, C{I}).

Y Mat(n, H{I, J, K}) @r C{i} —
(g1 +q2J) + (p1 + p2J)i

where g1, g2, p1, p2 € Mat(n, C{I}).

The involution induced by Id ®o

o' =¥ o(ld®s) oy
on Mat(2n, C) acts in the following way:

m— —Qms2

0 Id,
-1d, O
Mat(4n, C).

where Q =

If we take a quaternionic structure Q on A% then we define

Q/:=1/foQol/f_l.

W Birkhauser
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We can see Q' as a complex 4n x 4n-matrix acting on (A’)? in the following way: for
x e (AN,

0'(x) := Q'o’(x) = — Q' QL.
Q' is a quaternionic structure, therefore,
—x = (0 (%) = Q'R Q2T = —0'Q0'Ax.
So we obtain, Q' is a quaternionic structure on A if and only if
0'Q0'Q) = 1duy -
The anti-involution induced by o1 ® 1d
Yo(o1®Id)oy™
on Mat(2n, C) acts in the following way:
me> —Qm’ Q.

So we define the standard symplectic form @ on (A’)> with respect to this anti-
involution: for x, y € (4")2,

0 Idy
L y) = —Qox’ Q g
o(x,y) 0x" €20 <—Id2n 0 >y
and for a quaternionic structure Q’, we define
- 0 Id
ho (. y) = w(Q'(x).y) = ¥ Q0(0) 2 (_ 14, 02”) y
n
- 0 Id
_ _ =T NT 2n
= ' 2(0) (_Idzn 0 )y
The “space of quaternionic structures” model for GL(2n, C) is then:

0'Q00'Q) = Iday,

0 Id,,

¢(0@n, ©)):=1 Q' & Mat(4n, C) _QO(Q/)T(_HZ" : >eHerm+(4n,C)

The model for the symmetric space of €(SO*(4n)) can be seen as a subset of
¢(0(4n, C)) whose elements commute with o’ i.e. ¢'(Q'(x)) = Q'(0'(x)). There-
fore:

o' (Q'(x)) = Q0 (x)Q2 = QO'QQQ = —Q0'Qx,
0'(0'(x) = —Q'QW' ()2 = 0'QQIQQ = —Q'x
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and we obtain:
¢(SO*(4n)) = {Q' € €(04n,C)) | Q' = Q0'Q}.

The space €(SO*(4n)) can be also seen directly as complex structures Q on Aﬁ
such that the form:

ho(x,y) =a1(x) o1(Q) Qoy

is positive definite. So we obtain:
T +
Q(SO*(4n))={Q/ € Matn, H{i, j, k) 22(@ ?3 € Herm* (2n, H{1, J, K)), }
= —1d2p

Appendix A: Classification of Hermitian algebras

The goal of this section is to classify all Hermitian algebras. To do this, we consider
a more general class of algebras that we call pre-Hermitian, and classify them.

Let (A, o) be a ring with an anti-involution o. As usual, we say that a € A is
symmetric if o (@) = a, denote the set of all symmetric elements in A by A°. Clearly,
if 2 € A*, then A is a (unital) Jordan ring under the operationaob = 2= Yab + ba).

If A is an algebra over a commutative ring F' and o is F-linear, then we will refer
to (A, o) as an F-algebra.

Definition A.1 The Jacobson radical J(A) of a unital ring A is the set of all x € A
such that 1 + AxA € A*. In particular, 1 + J(A) is a subgroup of A*.

It is well-known (see e.g., [17]) that J(A) is a nilpotent ideal for any (left or right)
Artinian ring A. Moreover, such a ring is semisimple if and only if J(A) = {0}. In
particular, this holds for finite dimensional algebras over any field.

Proposition A.2 J(A) is invariant under any anti-involution of any ring A.

Proof Clearly, if o is any anti-involution of A then 14+ Ao (x)A C A* forallx € J(A)
hence o (x) € J(A). O

Definition A.3 We say that a ring (A, o) is pre-Hermitian if A° N J(A) = {0}.

If J(A) = {0}, A is sometimes called Jacobson semisimple (in particular, any C*-
algebra is Jacobson semisimple as a consequence of Gelfand-Naimark theorem). Also
note that any R-subalgebra of Mat(n, C) invariant under the Hermitian transposition
is semisimple and, therefore, Jacobson semisimple (see [20], Exercise 18, p. 168). By
definition, any Jacobson semisimple (A, o) is pre-Hermitian.

Definition A.4 We say that a ring (A, o) is Hermitian if a’>+ b2 =0fora,b e A°
implies thata = b = 0.

In particular, nonzero symmetric elements of Hermitian rings are not nilpotent.
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Remark A.5 In contrast to the main part of this paper, we do not assume in this appendix
that a Hermitian ring is an algebra over a real closed field.

Remark A.6 1f (A, o) is a Hermitian ring such that J(A) = {0}, then, similarly to the
Proposition 2.58, we can show that —a’ e A‘;O (See definition 2.11) foralla € A™°.

Remark A.7 Similarly to AZ, for any ring (A, o) denote by AZ , the set of all sums
a12 + -4 a,2,, n > 1, where all g; are nonzero elements of A?. By definition, A‘;O
is an additive sub-semigroup of A, which may or may not contain 0. Clearly, AZ ; =
A7, U {0}. Also, it is immediate that if 0 ¢ A7, then (A, o) is Hermitian. It would

be interesting to classify those rings in which the opposite implication holds.
Proposition A.8 Any Hermitian ring A with nilpotent J(A) is pre-Hermitian.

Proof Assume, there exists 0 # x € J(A)N A?. Since J(A) is a nilpotent ideal, there
exist x € J(A) such that a := x" # 0 and a?® = 0 for some n > 0. Therefore, a = 0,
which is a contradiction. ]

Proposition A.9 Let (A, o) be a pre-Hermitian ring. Then o (x) = —x and xy = —yx
forany x, y € J(A). In particular, 2x*> = 0.

Proof Let x € J(A). Since x + o (x) € J(A) N A° = {0}, o (x) = —x. Furthermore,
—xy=o0(xy)=0()o(x) =yxforx,y e J(A). O

Proposition A.10 If (A, o) is pre-Hermitian then:

(a) o(x) = —x forall x € J(A) and xa = o(a)x forall x € J(A), a € A.
(b) yx = —xy forallx,y € J(A) and xyz =0 forall x,y,z € J(A).
(c) (o(a) —a)xy =xy(o(a) —a)=0alla € A, x,y € J(A)

Proof Prove (a). Since o (x) € J(A) forall x € J(A) by Proposition A.2, x + o (x) €
J(A) N A° = {0}. This proves the fist assertion. To prove the second assertion, using
the fact that xa € J(A) forall x € J(A),a € A, we obtain

xa =—o(xa) = —o(a)o(x) =0c(a)x .

This proves (a).
To prove (b) note that xy = —o(xy) = —yx for all x, y € J(A). To prove the
second assertion, note that

o(xyz) = —zyXx = —yxz = xyz

for all x, y, z € J(A) hence xyz = 0. This proves (b).

To prove (c) note that on the one hand, xya = xo(a)y = axy and on the other
hand, (xy)a = o(a)(xy) foralla € A and x, y € J(A). This proves (c).

The proposition is proved. O

Corollary A.11 If (A, o) and (B, o) are pre-Hermitian algebras over F, char F # 2
and (A, o) ® (B, ¢') is also pre-Hermitian, then either J(A) = {0} or J(B) = {0}.
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Proof Indeed,Ifx € J(A),y € J(B),thenx®y € (A®B)”®"/ by Proposition A.10.
O

Example A.12 Let V be a finite-dimensional vector space over a field F, char F # 2,
A= A (V) be the exterior algebra of V, and & be the unique anti-involution of A
such that 6 (v) = —v for all v € V. Denote by A the quotient of A by the ideal
generated by A3V, sothat A= F @ V @ A%V as a vector space. Since & preserves
the ideal generated by A3V, it induces a well-defined anti-involution o on A. Clearly,
J(A) = V@ A%V and o(x) = —x for all x € J(A). Thus, (A, o) is pre-Hermitian
with A% = F and A, = Fo.

Proposition A.13 Let A be a pre-Hermitian ring. Then
A°-J(A)=J(A)-A° =0

where A° = A - [A, A] = [A, A] - A is the ideal of A generated by all commutators
la, bl =ab — ba, a,b € A.

Proof 1t follows from Proposition A.10 that
abx = xo(ab) = xo(b)o (a) = bxo (a) = bax

foralla,b € A, x € J(A) hence [a, b]lx = 0. Also, x[a, b] = [0(b), o (a)]x = 0.
The proposition is proved. O

Example A.14 A° = A if A is simple noncommutative and (Mat, (A))° = Mat, (A) if
A° = A.

The following definition is motivated by Proposition A.10.

Definition A.15 We say that a (unitless) ring J is nilpotent pre-Hermitian if:

e 2x = 0 implies that x = O (this is relevant only in characteristic 2).
e yx =—xyandxyz =0forallx,y, z € J.

Clearly, for any nilpotent pre-Hermitian ring J with 0 ¢ 2(J \ {0}), the assignments
Jj > —Jj define an anti-involution on J with no fixed points in J \ {0}.

Let J be aring and K be a commutative ring that acts on J from the left. We denote
the action by:

>: K xJ — J
(k, j) > kej.

Similarly, if K acts in J from the right, we denote the action by:

< JxK— J
(j, k) — j<k.
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We say that aring J is a left K-algebra if J is a left K-module with respect to > and
ke(jj') = (ke ) '

forall j, j' € J,k € K (so we will sometimes denote it simply by kj ;).
We say that a ring J is a right K-algebra if J is a right K-module with respect to <
and

i<k = j(j'<k)
forall j, j/ € J, k € K (so we will sometimes denote it simply by j;j’<k).

Definition A.16 Let K be acommutative unital ring with an involution -, J be a unitless
K-algebraand y : K — J be a homomorphism of abelian groups. We say that J is a
(K,~, y)-algebra if:

Jy (k') = key (K)) = K'>y (k) — y (k)y (k') = 0,

_ _ (1.3)
Jk>j") = (k>j — jy &)’ k =k jj = jy k)]’

forall j,j € J,k, k' € K.

When J satisfies J3 = 0, e.g., when J is pre-Hermitian, the conditions (1.3)
simplify to

jykk"y — key (k') — K'my (k) = 0, (14)
jlksj) =ksjj = ksjj’ '

forall j,j € J,k € K.

Proposition A.17 Let K be a commutative unital ring and J be a (K, ~, y)-algebra.
Then:

(a) J ® K has a structure of an associative unital ring with the multiplication given
by

G+oG +K)=jj +kej +kvj— jyk) +kk' (1.5)

forall j,j € J, k, k' € K (we denote this ring by J x,, K and refer to as semidirect
sum of J and K over y).

(b) J is a two-sided ideal in J x,, K, moreover, the projection to the second factor
is a surjective homomorphism J %, K — K of rings whose kernel is J.

-7 7 o Y&y E)

(c) Suppose that2 € K* and y (kk') = k»y (k') ~|—Ii’>y(k) —y®)y )+ =F5—
forallk, k' € K. Then the assignments k — (k) := k + %k) define an injective ring
homomorphism : K — J x, K. Suppose additionally that jy (k) = 2jy () +yk)j
forallj e J, ke K.ThenJ %, K =J x9 1(K).
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Proof Defineamap<:J x K — J by
j<k :=ksj — jy (k).

Lemma A.18 < is an action of K on J commuting with > and (jj" )<k = j(j’'<k) for
allj,j € J, k € K, (i.e, J is a right K -algebra).

Proof First, show that < commute with . Indeed,
(ke j)<k’ = k's(k>j) — (ke )y () = ke (K'sj) — ks jy (k') = ks (j<k’)

forall j € J,k, k' €¢ K becausel is a left K-algebra. o o
Furthermore, (j<k)<k’ = k'>(j<k) — (j<k)y(k') = kk'sj — k'sjy (k) —
(j<k)y (k)

kk'sj — (jak)y (k) — jy(k)y (k') — (j<k)y (K') = kk'>j — jy (K'k) = jakk)

for all k, k" € K, j € J by the commutation of < with > and the first condition of
(1.3).

Since Jy (1) = {0} by the first condition (1.3), i.e., <1 = Idy, this proves that J is
a K-module under <.

Finally,

JG'k) = jlkej = j'y (k) = kejj’ — jyk)j’
—ji'vt)y =kejj' — jj'y k) = (jj))<k

for all k, k' € K, j € J by the second and third conditions of (1.3). This proves that

J is aright K -algebra under <.
The lemma is proved. O

Note that the identity
(j<k)j" = j(kej") (1.6)

forallk € K, j, j’ € J is equivalent to the second condition (1.3).
The following is immediate and well-known.

LemmaA.19 Let R and S be associative ring, R is unitless, S is unital and R is an
S-bimodule such that

so(rr’) = (sor)r!, (rr)<s = r(r'<s), (r<s)r’ = r(ssr’) (1.7)

forallr,r € R, s,s’" € §. Then A := R @ S is a unital associative ring with the
product given by

T+ +5)=rr +sor' +ras’ + 55
forallr,r" € R, S,s' € S.
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Thus, (1.6) and Lemma A.18 guarantee that all assumptions of Lemma A.19 hold
for R = J, S = K, therefore, J & K is a unital associative ring. This proves (a).
Part (b) is obvious.

Prove (c). Indeed, t(k)(K) = (& + L)@ + L8y = T 4 Ex@by®al o

y®)y k)

4

—  key (k) + Ky k) —yk)y & by — yEk
T+ >y (k') + >7/2() y(k)y( )+V( )jt/( )=kk/+y(2 ):L(kk/)

for all k, k¥’ € K by the first relation (1.3). Therefore, ¢ is a homomorphism of rings.
Its injectivity follows because ¢ splits the canonical homomorphism from (b). Finally,

o ik n
jewy = @+ 2 =k jy @+ LB =k 1 Y =

forall j € J,k € K. This proves that J is a (1(K),~, 0)-algebra with the trivial y = 0
and: -

e The involution~defined by ¢ (k) = «(k) forall k € K.

o The left action of ¢(k) on J by the left multiplication in J x,, K.

In particular, J %, K = J ¢ ¢(K). Part (c) is proved.

The proposition is proved. O

Given a commutative ring (K, -) with anti-involution, we say that a left K -algebra
Jisa (K, *)-algebra if

kejj' = kejj' = jkej

for all j, j/ € J, k € K. Clearly, (K, )-algebras are same as (K, -, 0)-algebras.
Also, in view of (1.4), any nilpotent pre-Hermitian (K, -, y)-algebra is automatically
a (K, 7)-algebra.

Proposition A.20 Let (K, ~) be any commutative ring with anti-involution and let J be
any nilpotent pre-Hermitian ring. Suppose that J is a (K, ~)-algebra andlety : K —
J be any homomorphism of abelian groups such that: y (kk') = ksy (k') + k'sy (k)
forall k, k' € k. Then:

(a) Jisa(K,~, y)-algebra.

(b) Suppose additionally that y (k) = y (k) for all k € K. Then the assignments
j+k v yk) — j + k define an anti-involution o on J X, K. Moreover, if K is
semisimple (i.e., is a direct sum of fields), then (J x,, K, o) is pre-Hermitian.

Proof Prove (a). Indeed, the conditions (1.4) hold automatically for this choice of y
and because J is (K, -)-algebra. This proves (a).

Prove (b). First, let us verify that ¢ is an anti-involution. Indeed,
o@(j+k)=0yk —j+b=j—yk) +ol)=j—yk) +k+yk =j+k
forall j € J,k € K. Thatis, 02 = 1.
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Furthermore, by definition (1.5), jk = kj — jy (k) = kj +y(k)j = ko (k) j hence
kj = jo(k)forall j € J,k € K. Then
o (kk') = kk' + y (kk') = kk' + ky (k') + K'y (k) = kk' + k(o (K) — k') + K'y (k)
=ko (k') +y(k)o (k') = o (k)o (k)

for all k, k' € K. Clearly,
ys Y A ./ .
o(jj)y=—jji=Jji=0c()o(j)
forall j, j/ € J. Also,

o(kj) = o(kej) = —kej = —kj = —jo (k) = o(j)o (k)
o(jk) =o(a(k)j) =o0(j)o(ok) =—jk=—ok)j=0ck)o())
forall j € J,k € K.
This proves the first assertion. To prove the second assertion, note that semisim-
plicity of K and Proposition A.17(b) imply that Jacobson radical of J x,, K is J. This

finishes proof of (b).
The proposition is proved. O

The following is an immediate corollary of Proposition A.20.

Corollary A.21 Let (A, o) be any pre-Hermitian ring and K be any commutative unital
subring of A such that K N J(A) = {0} and o (K) C K + J(A). Then

(a) J(A) is both a (K,~)-algebra and a (K ,~, y)-algebra, where:

e J(A) is a K-algebra via left multiplication. B
e - : K - Kandy : K — J(A) are determined by o (k) = y (k) + k for all
keK.

(b) The subring of A generated by K and J(A) is naturally isomorphic to J(A) %, K.

Recall that F is a perfect field if every irreducible polynomial over F has distinct
roots. In particular, all fields of characteristic zero and all finite fields are perfect.

Theorem A.22 (Wedderburn-Mal’cev theorem (see [20], Exercise 18, p. 191)) Let R
be a finite dimensional algebra over a perfect field F. Then

(a) There is a splitting t of the short exact sequence J(R) - R — S := R/J(R),
e.g, R=18)® J(R).
(b) The images of all splittings « : S — R are conjugate in R by 1 + J(R).

Remark A.23 1In fact, the multiplication in R in Theorem A.22 is as in Lemma A.19
since J (R) is naturally a bimodule over S¢(S).

The following is immediate.
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Lemma A.24 [n the assumptions of Theorem A.22 suppose that o (1(S)) = t(S) for an
anti-involution o of R and a splitting 1 : S < R. Then R° = ((5)° & J(R)°.

The following is well-known (cf. [20], Theorem 25C.17).

Theorem A.25 In the assumptions of Theorem A.22, there exists a faithful n-
dimensional representation p of R into the algebra of n-block upper triangular
matrices (for some partition n of n) such that p(J(R)) is in the block-strictly upper
triangular part of Mat (n, F) and the image under p of at least one splittingt : S <— R
is in the block-diagonal part of Mat(n, F).

We will use Theorem A.22 to finish the classification of finite-dimensional pre-
Hermitian algebras over perfect fields as follows.

Theorem A.26 Let (A, o) be afinite-dimensional pre-Hermitian algebra over a perfect

field F, denote by K the maximal abelian ideal of the semisimple quotient S = A/J(A)

and by B its complement so that S = B @ K. Then there is a unique copy of B in A

splitting the canonical homomorphism 7w : A — S, that is, A = B & K,o0(B) =B

O'(K) = K, where K = 7~ Y(K). More precisely, K = = J(A) if K = {0} and
= J(A) x,, K otherwise (in the notation of Corollary A.21).

Proof Indeed, B° = B because each simple component C of B satisfies C° = C
since [C, C] # 0. Furthermore, in the notation of Theorem A.22(a), fix a splitting
t: S < A of homomorphism 7 : A — S. Then «(B) = «(B°) = «(B)°® C A° hence
t(B)J(A) = J(A)(B) = {0} by Proposition A.13. To prove the first assertion note
that, by Theorem A.22(b), the images of B under any splitting S < A are conjugate
to t(B) by 1 4+ J(A). Since (1 + J(A))ue(b) = ¢«(b)(1 + J(A)) = «(b) for all b € B,
we see that ((B) is a unique copy of B in A. In particular, o («(B)) = «(B).

Furthermore, by definition, U(K ) = K and K = (K)+J (A) as a vector space
over F. Since L(B)L(K) = ((K)t(B) = {0}, we see that L(B)K = KL(B) {0}.
Therefore, A = B @ K, as an algebra.

If K = {0}, then, clearly, K = J(A). Suppose that K # {0}. Since o (¢(K)) C K=
1((K)+ J(A), we see that ((K) satisfies the hypotheses of Corollary A.21. Therefore,
K = J(A) x;, (K).

The theorem is proved. O

The following is immediate.

Corollary A.27 In the assumptions of Theorem A.26, one has

(a) If K = {0} then A is Hermitian if and only if B is Hermitian. Otherwise, A is
Hermitian if and only if both B and K are Hermitian.
(b) If A is Hermitian, then
. _[B% k=0, [BE ifR=10p
0 BZ,® KZ, otherwise + B ® K{ otherwise

We discuss now anti-involutions on simple rings.
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Clearly, if (A, o) is a Hermitian algebra over a field F, then so is F, i.e., F is a
formally real field. In particular, if A° = F, then (A, o) is Hermitian if and only if F
is a formally real.

The following is an immediate consequence of the Skolem-Noether theorem.

For any ring (A, t) with an anti-involution T denote by Al™l the set of all v € A
such that 7 (v) = vz, for some z € Z(A)* such that t(z) = z~! (In particular, if each
element of the center Z(A) is fixed under 7, then t(v) € {v, —v}, i.e., ). Clearly, the
assignments (w, v) — wev := wvt(w) define an action of the multiplicative group
A* on Al*l,

LemmaA.28 Let (A, t) be a simple Artinian ring. Then

(a) For any anti-involution o : A — A there is an element v € Al (unique up to
multiplication by elements of the field Z(A)) such that o (a) = vt(a)v—! for all
a e A.

(b) For any v € A! the assignments a — vt(a)v™" define an involution o, on A.

(c) For any w € A* the assignments a — waw ™! define an isomorphism of rings
with anti-involution (A, 0,)= (A, Oyey).

Definition A.29 We say that an algebra (A, o) over F is thin if A° = F.

The first example of a thin algebra is given by Example A.12. Another one is a
(generalized) quaternion algebra (see Remark A.33 below).

Clearly every thin algebra (A, o) over F is pre-Hermitian and the direct sum of two
F-algebras is never thin because (A & AN = AT @ A/ o Moreover, the following
is an immediate consequence of Theorem A.26.

Lemma A.30 If a finite-dimensional algebra (A, o) over a perfect field F with
char(F) # 2 is thin then it is either simple noncommutative, or direct sum of two
copes of a simple algebra interchanged by o, or pre-Hermitian whose semisimple
quotient A/ J(A) is a field extension of F.

Proposition A.31 Let F be a perfect field with char(F) # 2 and (A, o) be a thin
semisimple finite-dimensional algebra over F. Then:

(a) A= F®A where A=° = {a € A : 0(a) = —al} is the space of skew-symmetric
elements.

(b) A~ admits a unique nonsingular symmetric bilinear form 8 such that aa’+a’'a =
—B(a,a’) foralla € A~°.

(¢) Ifa is a nilpotent element in A then a € A~ and a* = 0.

(d) A™C isa Lie algebra with respect to the commutator bracket [a, a'] = aa’ —a'a =
2aa’ 4 B(a, a’)

(e) 2a"’a’a — 2ad’a” = B([a,d’],a’) = B(a,l[a’,a"]) and B([a,d'],[a,d’]) =
Ba,a)B(a’,a’) — B(a,a’)? fora,a’,a" € A~°.

Proof Part (a) is obvious because A’ = F. To prove (b) note that f(a, a') := —aa’ —
a’a is fixed by o and thus belongs to F forall a, a’ € A. This is obviously a symmetric
bilinear form on A, denote by S its restriction to A~ . If z is in the radical of g, then
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za+az = 0foralla € A~?, which implies that z = 0 by Lemma A.30. This proves
(b).

Prove (c). Let a € A be a nilpotent and suppose that a ¢ A~7. Then there exists
¢ € F* such that the nilpotent element b := ca satisfies o (b) = 1 — b. Therefore,
(1 — b)" = 0 for some n > 2. This contradicts to the non-invertibility of b. Thus,
o(a) = —a and a’isa nilpotent in A° = F, that is, a’ =0.

Part (d) is obvious because o ([a, a’]) = —[a,a’] foralla,a’ € A°.

Prove (e). Indeed,

B(a,a'l,a") = —[a,d'la" —a"la,a'] = —Qad’ + B(a,a’))a”
—a"(=2d'a — B(d, a))

— za//a/a _ zaa/a// — _ﬂ([a//7 a/]’ a)
foralla, a’, a” € A?.This proves the first assertion. To prove the second one, compute

B(a,d'l,[a,d'l) =2(ad’ —d'a)a’a +2aa’(a'a — aa’)
= —2(ad +d'a)da —2ad (@'a + ad’) + 4ada + 4d'd*a’
=2B(a,d')(ad’ +d'a) —2a*B(d, a)
~2d"*B(a.a) = fla.a)B(a’.a) — Pla.a')?

forall a,a’ € A=°. This proves (d).
The proposition is proved. O

Theorem A.32 Let F be a perfect field with char(F) # 2 and (A, o) be a thin
semisimple finite-dimensional algebra over F. Then A is either a division algebra
over F with dimp A € {1,2,4} or A = F & F (so that o is the permutation of
summands).

Proof Indeed, any simple component of A is Mat, (D), where D is a division algebra
over F. Note thatif n > 3, then A contains an element ¢ = e, + €23 which contradicts
to Proposition A.31(c). Thus, n < 2 and A € {D, D & D, Maty(D), Maty(D) &
Mat, (D)} by Lemma A.30. Note, however, that the last two algebras are not thin. If
A =D ® D, then (x,0(x)) € A? forall x € D, i.e. we always have a copy of D in
A% = F,thatis, D = F.

The theorem is proved. O

For any ring F and «, B € F denote by H,, g the F-algebra with a presentation:
Hyp=(i,j|i*=a, j2=8, ji=—ij).

Clearly, it admits a unique anti-involution - such thati = —i, 7 = —j. By construction,
aa =aa € F forall a € Hy g. In particular, Hy g is a division algebra if and only if
F is afield and aa € F* for all nonzero a € Hy g.

Remark A.33 Any 4-dimensional division algebra D over a field F' with char F' # 2
is isomorphic to H, g for some non-squares o, € F*. Clearly, it is thin with the
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above anti-involution -. Note that if both —« and —f are complete squares in F, then
Hg,p = H_1,— is the ordinary algebra of quaternions.

Remark A.34 Suppose that char F # 2 and the algebraic closure F of F is a quadratic
extension of F. Then any division algebra over F' is isomorphic to either F or to some
He, -

Generalizing the above observations, we construct some twisted group algebras of
abelian groups with anti-involutions. Recall that, given a group G and its linear action
> on a commutative ring K, amap x : G x G — K is called a 2-cocycle on G (in
K)if

(gex(g. eMNxg g'e" =x(g. 8)x(gg' g")

forallg, g, ¢" € G.
Furthermore, denote by K, G the x-twisted group algebra of G, i.e., a K-algebra
with a free K-basis {[g], g € G} and the multiplication table:

[elle'l = x(g. &) - [gg']. [glk = g >k - [g]

forall g, g’ € G, k € K. It is well-known that any central simple (e.g., a division)
algebra A over a field F = K€ is isomorphic to some K x G so that K is a Galois field
extension of F.

The following is immediate.

Lemma A.35 Let- be an involution on K. Then the following statements are equivalent
fora?2-cocycle x : G x G — K:

(a) The assignments k - [g] — [0(g)] - k for g € G, k € K define an anti-involution
on K,G.

(b) o(g)>k =g 'okand x (g, g") = gg'> x(0(g),0(g)) forall g, g’ € G, k € K.

In particular, if the G-action > is trivial, the cocycle conditions simplifies:

x(gg'. 8" x(g.8) =x(g. 8¢ xg g"
forall g, g’, g” € G (e.g., x is a bicharacter of G).
The following is immediate.

Lemma A.36 Let G be an abelian group, trivially acting on K, - be an anti-involution
onK ande: G — K*, g — &, be a map. Then the following are equivalent:

(a) The assignments k - [g] — %sg -[gl for g € G, k € K define an anti-involution
os on Ky G.

(b) &g =e; ' and x(¢', &) = x(g, g’)sggfsgleglfor allg, g' € G.
In particular, (K, G)% = @ K, - [g], where Ky = {k € K : k = k - &} for all
geG

g €G.
Now we classify anti-involutions on 4-dimensional division algebras.
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Proposition A.37 In the notation as above, suppose that Hy g is a noncommutative
division algebra (over a field F). Then any anti-involution on Hy g is either - or is
given by

o(a) = vxv !
for some nonzero imaginary v, i.e., such that v = —v (in what follows, we denote the
latter anti-involution by o).

Proof By Skolem-Noether theorem, any anti-involution o on Hy, g can be written as
o(x) = vxv~! where v € Hgﬁ. Then 02(a) = uau~' where u = vv~!. Since
02 =1,wehavea = uau~"' forall a €, i.e. u is central in He,p. Thatisu =c € F>.
This implies that v = ¢ v henceeitherc=1,v e FXorc=—1,7 = —v. O

Proposition A.38 In the assumptions of Proposition A.37, for any nonzero imaginary
v € Hy g there exist imaginary w, w’ such that [w, w'] = v and {1, w, w’, v} is a
basis of Hy g. In particular, vw = —wv, vw’ = —w'v, ww’ +w'w € F, (Hy ) =
F+ Fw+ Fw' and (Hy )% = F - v.

Proof Denote by V the set of all imaginary elements of H, g. For an imaginary v
define an F-linear map f, : V — Hy g by fy(a) := va +av. Clearly, the range of f,
is F, in particular, Ker f, is a 2-dimensional subspace of the (3-dimensional) space
V. Then

1 1 1

oy(a) =vav™ = —vav. =avv  =a

forany a € Ker f,. Thatis, F 4+ Ker f, C (Hq,p)°. Since v € (Hg g)~ ", we see
that F + Ker f, = (Hg,p)° and (Hy )™ = Fv.

Therefore, [w, w'] € F*v for any basis {w, w’'} of Ker f,.

The proposition is proved. O

Note that if Hl = H_; _ is the ordinary quaternion algebra over R, then w? =
—ww < 0 for any imaginary w € H, hence (v—w?2)? + w? = 0 and we obtain the
following immediate corollary of Proposition A.38.

Corollary A.39 The algebra (H, o) is Hermitian if and only if o = ~.

We conclude the section with recalling the Cayley-Dickson construction of (gen-
eralized) octonions Oy g := Hy g @ Hy, g, as a free module over a ring F with the
following multiplication table

(a,b)(d,b) = (ad —bb,ba+bd).
This is a non-associative F-algebra with the anti-involution given by

(a,b) = (a, —b)

so that (a, b)(a, b) = (a, b)(a, b) = (a@ +bb,0) foralla, b € O4g,p. In particular, if
H,p is a division algebra, then Oy, g is a non-associative division algebra as well.
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Appendix B: Isomorphisms and embeddings of matrix algebras

Some tensor products and direct products of matrix algebras are related in a way we
want to discuss in this section. The described in here isomorphisms and embeddings
are used in the main part of the paper as a tool to construct symmetric spaces and study
their properties.

As usual, for every algebra A and (anti-)involution o, we denote by A the set of
fixed points of o in A.

We also remind our standard notation of anti-involutions on matrix algebras.

(1) If Ais Mat(n, R) or Mat(n, C), then the anti-involution given by the transposition
of the matrix is denoted by o.

(2) If A is Mat(n, C), then by & is denoted the anti-involution given by o composed
with the complex conjugation.

(3) If A is Mat(n, H{i, j, k}), then the anti-involution op: A — A is given by the
rule og(r; + r2j) = o (r1) + & (r2)j where r, rp € Mat(n, C{i}). Another anti-
involution o1 : A — A is given by therule o1 (r; +12j) = o (r1) — o (r2)j where
r1, r» € Mat(n, C{i}).

Ifn = 1, we identify the algebra of 1 x 1 matrices with the corresponding (skew-)field
and use the same notation for the (anti-)involution in a (skew-)field as in the matrix
algebra over this (skew-)field, in particular, in this case o is the identity map on R or
C, o is the complex conjugation on C and o7 is the quaternionic conjugation on H.

B.1 Three isomorphisms of matrix algebras

In this section, we describe three well-known matrix algebras isomorphisms.

B.1.1 Mat(n, C) ®g C and Mat(n, C) x Mat(n, C)
FactB:1 The following map is an isomorphism of C{i}-algebras:

x : Mat(n, C{I}) ®r C{i} — Mat(n, C{i}) x Mat(n, C{i})
a—+bl — (a + bi,a — bi)

where a, b € Mat(n, C{i}). In particular,
xIdI®1) =(,—i), xAd®i) = (@, 1).
The anti-involution induced by o ® Id
xo(o®Id)oyx ™!
on Mat(n, C{i}) x Mat(n, C{i}) acts in the following way:

T T
(my, my) — (ml ,m2)~
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The anti-involution induced by ¢ ® Id

xo(@ ®Id)oyx!

on Mat(n, C{i}) x Mat(n, C{i}) acts in the following way:
(my,m2) > (m3, mp).
The involution induced by Id @&
xo(Id®d)o x~!
on Mat(n, C{i}) x Mat(n, C{i}) acts in the following way:
(my, my) > (ma, my).

Therefore:

x((Mat(n, C{I}) ®g C{i)°®") = {(m,m") | m € Mat(n, C{i})},
x (Mat(n, C{I}) ®g C{i))?®?) = Herm(n, C{i}) x Herm(n, C{i}),
x (Mat(n, C{I})) = x((Mat(n, C{I}) ®g C{i})"*®?)
= {(m,m) | m € Mat(n, C{i})}.
B.1.2 Mat(n, H) ® C and Mat(2n, C)

FactB:2 The following map is an isomorphism of algebras:
¥ Mat(n, H{i, j. k}) ®r C{I} — Mat(2n, C{i})

q1 + pii 42+P2i)

+qrj)+ +p2j)! — - - _7.
(q1 +q2)) + (p1 + p2Jj) <_q2_p21 31+ pii

where q1, q2, p1, p2 € Mat(n, C{i}). This is a C{I}-C{i}-isomorphism, i.e. ¥ (xI) =
Y (x)i for x € Mat(n, H{i, j, k}) ®r C{1}. In particular,

. Idi 0 . 0 Id

0 Idi .
xIdk®1) = <Idl, 0 > x(1d®I) =1di.

The anti-involution induced by op ® Id

Yo (op®@Id)oyr!
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on Mat(2n, C) acts in the following way:
. (Id 0 )mT<Id 0 )
0 —Id 0 -—-Id
The anti-involution induced by o1 ® Id
Yol ®@Id)oy!
on Mat(2n, C) acts in the following way:
m'_>_< 0 Id>mr< 0 Id>=(0 i)mT<0 i).
—-Id 0 —1d 0 —i 0 —i 0
The involution induced by Id ®o
Vo (Id®s) oy !
on Mat(2n, C) acts in the following way:
m;—>—( 0 Id)ﬁ,( 0 Id)z(o i>m<0 i).
—1d 0 —1d 0 —i 0 —i 0
The anti-involution induced by oy ® &

Yo(oop®a) oy

on Mat(2n, C) acts in the following way:
0Id\ -7 /0 1d
"= o)™ \1do):

¥ ((Mat(n, H{i, j, k}) ®g C{1})*1®!9)
- {m € Mat(2n, C{i}) ’m =— (_Old Ig) m? (—Old 151)}
=0 (—OId 1(;1) = sp(2n, C),

¥ ((Mat(n, H{i, j, k}) ®g C{1})70%)
- {m € Mat(2n, C{i}) 'm = (1(21 13) m’ <1(<)1 151)} ,

1//((Mat(n, H{l’ ja k}) Or C{I})Gl®5) = Herm(2n, C),
¥ (Mat(n, H{i, j, k})) = ¥ ((Mat(n, H{i, j, k}) ®g C{I})'1®)

Therefore:

W Birkhauser



Symplectic groups over noncommutative algebras Page 1150f 119 82

= {m € Mat(2n, C{i}) ’m == (_Old I(()1) m <—OId I(()i>}

_ q1 92 .
- {(_éz q]) ‘ql» q2 € Mat(n,(C{l})} .

B.1.3 Mat(n, H) ®r H and Mat(4n, R)
Fact B:3 The following map:
¢: Mat(n, H{I, J, K}) @ H{i, j, k} — Mat(4n, R)

defined on generators of Ay as follows:

0 a 0 0 0 0 a 0

|00 o . 0 0 0 a
Pa®D=19 0 0 —a| ?@“®P=1_a 0 0 o]

0 0 a 0 0 —a 0 0

0 0 0 a 0 —a 0 0

0 0 —a 0 a 0 0 0
pabi={qo 4, o o ?@e@b=1s o o _4|

4 0 0 0 0 0 a 0

0 0 —a 0 00 0 —a

0 0 0 a 00 —a 0

dalebl =1, o o of ?@k®D=1y , 0o o

0 —a 0 0 a 0 0 0

where a € Mat(n, R) is an R-algebra isomorphism.

The anti-involution o1 ® o¢ corresponds under ¢ to the following anti-involution

$o(o1®00)o¢

on Mat(4n, R): m — —EmT E where

0o 0 0 I,
-l o o -1 o
==l o 14 0o o0

~ld, 0 0 0

The anti-involution o1 ® o1 corresponds under ¢ to the transposition on Mat(4n, R).
Therefore:

¢ (Mat(n, H{I, J, K}) ®r H{i, j, k})71®%)
- {m € Mat(4n, R) | m = —EmTE}
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=0(E) =sp(4n, R),
¢ (Mat(n, Hii, j, k}) ®r H{i, j, kD7) = Sym(4n, R),

The real locus Mat(n, H{I, J, K}) of Mat(n, H{I, J, K}) g H{i, j, k} is mapped
by ¢ to:

¢ Mat(n, H{I, J, K}))

a —-b —c —d
b a —-d c

= ¢ d a  —b a,b,c,d e Mat(n, R)
d —c b a

B.2 Embeddings between matrix algebras

In this section, we consider the following two embeddings:

Mat(n, C{I}) ® C{j} — Mat(n, C{I}) ® H{i, j, k},
Mat(n, H{I, J, K}) ® C{j} = Mat(n, H{I, J, K}) ® H{i, j, k}.

We use these embedding to see the symmetric space for a real group inside the sym-
metric space for a complexified group.

B.2.1 Embedding Mat(n, C{/}) ® C{j} — Mat(n, C{/}) ® H{i, j, k}
In the previous sections, we have seen the isomorphisms:

x : Mat(n, C{I}) ®r C{j} — Mat(n, C{j}) x Mat(n, C{j})
a+bl — (a+bj,a—bj)

where a, b € Mat(n, C{,}) and
v Mat(n, C{I}) ®r H{i, j, k} — Mat(2n, C{i})
; : g1+ pii g2+ pai
1 - Lz 7).
(g1 +q2j) + (p1 + p2j)l — <—q2 — i Gy +p”>

where g1, q2, p1, p2 € Mat(n, C{i}).
We want to describe the map

Y oiox ' Mat(n, C{j}) x Mat(n, C{j}) — Mat(2n, C{i})
where
t: Mat(n, C{I}) ® C{j} — Mat(n, C{I}) ® H{i, j, k}
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is the natural embedding. Let (a, b) := (a1 + a2j, by + b2j) € Mat(n, C{j}) x
Mat(n, C{;j}) for ay, az, b1, by € Mat(n, R), then

_ a+b a-—>b ar+by+(a+b)j ay—br—(a; —by)j
. b) = Lazb,_ath (az 2)J+ 2 — by — (a1 1)]1.
2 2] 2 2

Therefore,

-1 _ 1 air+bi+(a2—b)i ax+by— (a1 —by)i
Vi@ b) =3 (—(az +by) + (a1 — b1)i a1 + by + (a2 —bz)i)'

We also describe the image of the map ¥ o 1o x !

Im(Yotoyx )= {(_qp 2)) 'p,q € Mat(n,(C{i})}

= {m € Mat(2n, C{i}) ‘m =— (—OId I(;i) m (—OId I(()i)} .
B.2.2 Embedding Mat(n, H{/, J, K}) ® C{j} — Mat(n, H{l, J, K}) ® H{i, j, k}
In the previous sections, we have seen the isomorphisms:
¥ Mat(n, H{I, J, K}) ®@r C{j} — Mat(2n, C{I})
(i +a2D)+ (1 + pad)j > (_"qu_pl;z’, 2 ﬁfﬁ) .
where q1, ¢2, p1, p2 € Mat(n, C{I}) and

¢: Mat(n, H{/, J, K}) ®r H{i, j, k} — Mat(4n, R)

defined as in the Sect. B.1.3.
We want to describe the image of the map

$oroy~!: Mat(2n, C{I}) — Mat(4n, R)
where
t: Mat(n, H{I, J, K}) ® C{j} — Mat(n, H{I, J, K}) ® H{i, j, k},
is the natural embedding.
Note that an element x € Mat(n, H{/, J, K}) ® H{i, j, k} is contained in the
subalgebra Mat(n, H{I, J, K}) ® C{;} if and only if x commutes with 1 ® j. So we
obtain:

Im(Yotox~ ') ={m e Mat(n,R) | m = —p(d, ®j)m¢p(d, ®j)}.
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