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Abstract
We introduce the symplectic group Sp2(A, σ ) over a noncommutative algebra A with
an anti-involution σ . We realize several classical Lie groups as Sp2 over various
noncommutative algebras, which provides new insights into their structure theory. We
construct several geometric spaces, on which the groups Sp2(A, σ ) act. We introduce
the space of isotropic A-lines, which generalizes the projective line. We describe the
action of Sp2(A, σ ) on isotropic A-lines, generalize the Kashiwara-Maslov index of
triples and the cross ratio of quadruples of isotropic A-lines as invariants of this action.
When the algebra A is Hermitian or the complexification of a Hermitian algebra, we
introduce the symmetric space XSp2(A,σ ), and construct different models of this space.
Applying this to classical Hermitian Lie groups of tube type (realized as Sp2(A, σ ))
and their complexifications, we obtain different models of the symmetric space as
noncommutative generalizations of models of the hyperbolic plane and of the three-
dimensional hyperbolic space. We also provide a partial classification of Hermitian
algebras in Appendix A.
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1 Introduction

The special linear groups SL2(R), when R is a commutative ring, are among the
most important and best studied groups in mathematics. They arise in many different
contexts: for example in number theory and arithmetic geometry and in the theory of
finite simple groups. In the special case when R = R or C, they are ubiquitous in Lie
theory and in representation theory. Via their geometric actions, they are fundamental
objects in projective, conformal and hyperbolic geometry.

The main aim of this paper is to generalize these groups to the case when R is
a noncommutative ring. Unfortunately, for a noncommutative ring, the definition of
SL2(R) is tricky, see [4, 5] and the comments below.

We will thus slightly change our point of view, and notice that, for a commutative
ring R, the special linear group SL2(R) is isomorphic to the symplectic group Sp2(R).
In this article we develop the theory of symplectic groups Sp2(A, σ ) over possibly
noncommutative algebras A with an anti-involution σ . We show that many aspects of
the classical SL2 theory can be developed over such noncommutative algebras (A, σ ).
We realize several classical Lie groups of higher rank as Sp2 over a noncommutative
algebra, thus providing new insights into the theory of such Lie groups.

(1) We define the group Sp2(A, σ ) and describe its action on a generalization of the
projective line: the space of isotropic lines. We generalize the Kashiwara-Maslov
index of triples and the cross ratio of 4-tuples of isotropic lines.

(2) We introduce Hermitian algebras (A, σ ) (see Definition 2.13), a special class of
R-algebras exhibiting positivity properties. In this case, we construct different
models of the symmetric space associated to Sp2(A, σ ) and its complexification
Sp2(AC, σC). We obtain generalizations of several models of the hyperbolic plane
and the three-dimensional hyperbolic space, which are the symmetric spaces asso-
ciated to SL(2, R) and SL(2, C) respectively.

(3) We show thatmost classicalHermitianLie groups of tube type, such as the standard
real symplectic group Sp(2n, R) can be naturally realized as Sp2(A, σ ). This
explains many aspects of the structure theory of Hermitian Lie groups of tube
type.

(4) As an application we describe new explicit models of the symmetric spaces asso-
ciated to the complex Lie groups Sp(2n, C),GL(2n, C), and O(4n, C).

(5) A large part of the theory outlined in (2) is completely algebraic, and works even
when R is replaced by any real closed field. This may be of interest for some
applications.

In [4, 5] two of the authors started to develop the general theory of Lie groups and
Lie algebras over noncommutative rings. This is a highly non-trivial theory. Some of
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the difficulties can be already be seen when trying to define the group SLn over a
noncommutative ring. It is immediate to define the group GLn over a noncommutative
ring R as linear invertible maps from Rn to Rn . But there is no appropriate definition
for the group SLn as a subgroup of GLn because there is no canonical choice of a
determinant, even though there is rich theory of quasi-determinants [10].

Our approach is motivated by the notion of �-positivity, a generalization of
Lusztig’s total positivity in the context of real Lie groups which are not necessarily
split, introduced in [11, 12, 22]. Hermitian Lie groups of tube type admit a �-positive
structure.1 The combinatorics of this �-positive structure is governed by the Weyl
group of a root system of type A1, making Hermitian Lie groups of tube type “look
like” SL2 theories over noncommutative algebras. Here we make this precise.

Our description of the different models of the symmetric spaces for most of the
Hermitian groups of tube type shows that the geometry of these symmetric space is
a noncommutative version of the classical planar hyperbolic geometry. This is not
surprising: for example a well-known model of the symmetric space of Sp(2n, R)

is the Siegel upper half space, and the formulae describing this model look like the
formulae of planar hyperbolic geometry, with matrices replacing numbers. The theory
developed here puts this observation into a more general theoretical framework.

Evenmore interesting is our description of differentmodels of the symmetric spaces
of the complexifications of the groups discussed above, such as Sp(2n, C), GL(2n, C),
O(4n, C). Here we show that the geometry of their symmetric spaces is a noncommu-
tative version of the classical 3-dimensional hyperbolic geometry. This fact is more
surprising.

We believe that this new point of view can be helpful and leads to new applications.
An immediate application is that the construction of noncommutative coordinates for
symplectic representations of fundamental groups of punctured surfaces developed in
[2] and its relation to the noncommutative cluster algebras introduced in [6] generalizes
to representations into classical Hermitian Lie groups of tube type. This will appear
in a forthcoming work.

We now describe the results of the paper in more detail.

1.1 Symplectic groups over involutive algebras

Let K be a field and consider an associative, possibly noncommutative unital finite-
dimensional K-algebra A. Let σ : A → A be an anti-involution, i.e. a K-linear
map with σ(ab) = σ(b)σ (a) for all a, b ∈ A and σ 2 = Id. We denote the set of
fixed points of σ by Aσ . Then we introduce the non-degenerate sesquilinear form
ω : A2 × A2 → A, defined by

ω(x, y) := σ(x)T�y ,

1 In fact, for Hermitian Lie groups the �-positive structure is related to the theory of Lie semigroups.
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for all x, y ∈ A2 and � =
(

0 1
−1 0

)
. The symplectic group Sp2(A, σ ) is defined as

Sp2(A, σ ) = Aut(ω) = { f ∈ Aut(A2) | ∀x, y ∈ A2 : ω( f (x), f (y)) = ω(x, y)} .

Similar to the classical case, we look at natural spaces onwhich the group Sp2(A, σ )

acts. The first such space is our noncommutative analog of the projective line. The
group does not act transitively on the space of all lines in A2, hence we restrict our
attention to the lines that are isotropic for ω:

P(Is(ω)) := {x A | ω(x, x) = 0, x ∈ A2 regular} ,

where an element x ∈ A2 is called regular if there exists y ∈ A2 such that x, y form
a basis. Two isotropic lines x A and yA are said to be transverse if x, y form a basis.

The action of Sp2(A, σ ) on P(Is(ω)) has some of the features we know from
projective or Möbius geometry, e.g. the action on quadruples of points preserve an
invariant that generalizes the cross-ratio:

Theorem 1.1 (1) The group Sp2(A, σ ) acts transitively on P(Is(ω))

(2) The group Sp2(A, σ ) acts transitively on the set of pairs of transverse isotropic
lines.

(3) The Sp2(A, σ )-orbits in the space of pairwise transverse triples of isotropic lines
are in one-to-one correspondence with the orbits of the action of the group of
invertible elements A× on the set of invertible fixed points (Aσ )× by

A× × (Aσ )× �→ (Aσ )×
(a, b) �→ abσ(a).

This gives rise to a generalization of the Kashiwara-Maslov index.
(4) The Sp2(A, σ )-orbits in the space of pairwise transverse 4-tuples of isotropic

lines are in one-to-one correspondence with the orbits of the action of the group
of invertible elements A× on the set A0 of products of invertible fixed points (Aσ )×,
A0 = {bb′ | b, b′ ∈ (Aσ )×}:

A× × A0 �→ A0

(a, b) �→ aba−1.

The conjugacy class in A0 is thus a noncommutative cross-ratio of a four-tuple of
pairwise transverse isotropic lines.

Of particular interest to us is a special class of involutive algebras that we call
Hermitian algebras. We describe the geometry of the symmetric spaces for Sp2(A, σ ),
when (A, σ ) is Hermitian or the complexification of an Hermitian algebra.

Hermitian algebras are algebras (A, σ ) over a real closed field K where the fol-
lowing holds: if a, b ∈ Aσ , then a2 + b2 = 0 if and only if a = b = 0. Readers
not familiar with real closed fields can simply think about the case where K = R,
since this is usually the most interesting case. Involutive algebras are closely related
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to Jordan algebras, and Hermitian algebras give rise to formally real Jordan algebras
see Sect. 2.3. A key feature of Hermitian algebras is the existence of a proper convex
cone Aσ+ ⊂ Aσ .

In the main body of the paper, we focus on semisimple Hermitian algebras. So, for
the rest of the introduction, whenever we say Hermitian algebra, we mean semisimple
Hermitian algebra. In Appendix Awe consider a more general class of rings with anti-
involution, which we call pre-Hermitian, investigate the theory of general Hermitian
algebras, and classify semisimple Hermitian algebras.

There are different ways in which we can construct new Hermitian algebras out
of old ones: Matrix algebras over Hermitian algebras are Hermitian, and complex-
ifications (and quaternionifications) of Hermitian algebras provide new Hermitian
algebras. Given a Hermitian algebra (A, σ ) we consider the complexification AC of
A and extend the involution complex linearly to an involution σC and complex anti-
linearly to an involution σ̄C. Then (AC, σ̄C) is an Hermitian algebra, but (AC, σC) is
not, see Sect. 2.

For Hermitian algebras and their complexifications we can refine Theorem 1.1.
For this we make the following definition: we say that a triple of pairwise transverse
isotropic lines is positive, if its Sp2(A, σ )-orbits corresponds to an element in Aσ+ by
the identification given in Theorem 1.1.

Theorem 1.2 If (A, σ ) is Hermitian, then Sp2(A, σ ) acts transitively on the space of
positive triples of pairwise transverse isotropic lines.

Theorem 1.3 Assume K = R and let (A, σ ) be a Hermitian algebra or its complexi-
fication. Then the space of isotropic lines is compact.

1.2 Symmetric spaces associated to Sp2(A, �)

Recall that the symmetric space associated to Sp2(R) is XSp2(R) = Sp2(R)/U1(C),
where U1(C) is a maximal compact subgroup. It admits many explicit models. It can
be realized as the space of compatible complex structures onR

2, this is the space C :={
J complex structure on R

2 | ω(J ·, ·) is an inner product} .We call this the “space of
complex structures” model. To obtain the upper hemisphere model, we complexify
R
2 to C

2 and extend the symplectic form ω complex linearly to a symplectic from ωC.
Similarly we extend a complex structure J complex linearly to C

2. Over C now the
complex structure is a diagonalizable endomorphism and we can associate to every
compatible complex structure its +i-eigenspace in C

2. This provides an embedding
of C into the space of isotropic lines P(Is(ωC)) = P(C2), whose image we denote by
P and call the projective model.

The Poincaré disk model D = {z ∈ C | zz < 1} and the upper half plane model
U = {z ∈ C | Im(z) > 0} arise from the projective model P naturally by picking
specific affine charts in P(C2). We call the disk model the precompact model. Taking
its closure in C, or the closure of P in P(C2), we obtain a compactification of the
symmetric space, in which the space of (isotropic) lines in R

2 arises as the boundary.
We show that these constructions can be appropriately generalized to symplec-

tic groups Sp2(A, σ ) over real Hermitian algebras (A, σ ). In order to introduce the
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maximal compact subgroup we observe that, given (A, σ ), the algebra Matn(A) of
n × n-matrices over A can be endowed with the anti-involution σ T , which applies
σ to each entry and then the transpose. When (A, σ ) is a Hermitian algebra, then
(Matn(A), σ T ) is Hermitian as well. In that case the subgroup Un(A, σ ) = {M ∈
Matn(A) | σ(M)T M = Idn} is compact. This allows us to define the maxi-
mal compact subgroups KSp2(A, σ ) = Sp2(A, σ ) ∩ U2(A, σ ) ⊂ Sp2(A, σ ), and
KSpc2(AC, σC) = Sp2(AC, σC) ∩U2(AC, σ̄C) ⊂ Sp2(AC, σC). We can thus consider
the symmetric space associated to Sp2(A, σ ), XSp2(A,σ ) = Sp2(A, σ )/KSp2(A, σ ),
and the symmetric space XSp2(AC,σC) = Sp2(AC, σC)/KSpc2(AC, σC). We develop
different explicit models for the symmetric spaces XSp2(A,σ ) and XSp2(AC,σC).

Theorem 1.4 Let (A, σ ) be a real Hermitian algebra and (AC, σC, σ̄C) its complexi-
fication. Then the symmetric space XSp2(A,σ ) = Sp2(A, σ )/KSp2(A, σ ) admits

(1) a “space of complex structures” model
C := {

J complex structure on A2 | ω(J ·, ·) is a σ -inner product
}
,

(2) a projective modelP := {vAC | v ∈ Is(ωC), iωC(v, v) ∈ (Aσ̄
C
)+},where (Aσ̄

C
)+

is the proper convex cone in (Aσ̄
C
),

(3) a precompact model D̊(AσC
C

, σ̄C) := {c ∈ AσC
C

| 1 − c̄c ∈ (Aσ̄C
C

)+},
(4) an upper half-space modelU := {z ∈ AσC

C
| Im(z) ∈ Aσ+}, where Aσ+ is the proper

convex cone in Aσ .

Furthermore, there are natural maps between these different models. The closure of
the precompact model gives rise to a compactification of XSp2(A,σ ) in which the space
of isotropic lines P(Is(ω)) appears as the closed Sp2(A, σ )-orbit.

For the group Sp2(C) there is a similar construction of explicit models of the
symmetric space, which is less well known. The symplectic group Sp2(C) acts
on (C2, ω), which we view as the complexification of R

2. A quaternionic struc-
ture on C

2 is an additive map J : C
2 → C

2 such that J 2 = − Id and
such that J (xa) = J (x)ā for all x ∈ C

2, a ∈ C. Then Sp2(C) acts natu-
rally on the space of compatible quaternionic structures on C

2, which is C :=
{J quaternionic structure on C

2 | ω(J ·, ·) is a Hermitian inner product}. We call C
the “space of quaternionic structures” model of XSp2(C). Analogously to the above
construction, where we complexified R

2 we can now quaternionify C
2 and extend

the symplectic form ω as well as the quaternionic structure. One has to be a bit more
cautious working with the quaternionsH, but one gets a projective modelP ⊂ P(H2),
a precompact model D = {x+ yi+z j ∈ H | 1−(x2+ y2+z2) > 0} ⊂ H and a upper
half space model U = {x + yi + z j ∈ H | x, y, z ∈ R, z > 0} ⊂ H. These quater-
nionic models for the three-dimensional hyperbolic space are for example described
in [1, 19].

We prove that an analogous construction can bemade for the complexified symplec-
tic groups Sp2(AC, σC), using quaternionic extensions AH of the Hermitian algebra
A with two appropriate quaternionic extensions σ0 and σ1 of the anti-involution σ . In
particular, we obtain

Theorem 1.5 Let (AC, σC) be the complexification of a real Hermitian algebra (A, σ ).
Then the symmetric space XSp2(AC,σC) = Sp2(AC, σC)/KSpc2(AC, σC) admits
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(1) a “space of quaternionic structures” model
C := {J quaternionic structure on A2

C
| ω(J ·, ·) is a σ̄C-inner product},

(2) a projective model P ⊂ Is(ωH),
(3) a precompact model D̊(Aσ0

H
, σ1) := {c ∈ Aσ0

H
| 1 − σ1(c)c ∈ (Aσ1

H
)+}, where

(Aσ1
H

)+ is the proper convex cone in the quaternionification of A,
(4) an upper half-space model U := {z0 + z1 j ∈ Aσ0

H
| z0 ∈ AσC

C
, z1 ∈ (Aσ̄

C
)+}.

Furthermore, there are natural maps between these different models. The closure of
the precompact model gives rise to a compactification of XSp2(AC,σC) in which the
space of isotropic lines P(Is(ωC)) appears as the closed Sp2(AC, σC)-orbit.

1.3 Hermitian Lie groups of tube type

As we mentioned before, Hermitian Lie groups of tube type look a lot like groups
of type Sp2 over real involutive noncommutative algebras. We illustrate it on the
following example:

We consider the R-algebra A = Mat(n, R) of real n × n-matrices. A natural
anti-involution on A is the transposition that we denote by σ . Then by definition,

M ∈ Sp2(A, σ ) if and only if σ(M)�M = MT�M = � where � =
(

0 1
−1 0

)
. Here

we used the standard identification of Mat(2n, R) and Mat2(Mat(n, R)). That means,
M is a symplectic 2n × 2n-matrix and the group Sp2(A, σ ) agrees with Sp(2n, R).

With the theory of symplectic groups over noncommutative involutive algebras, we
can make the correspondence between Hermitian Lie groups of tube type and sym-
plectic groups over semisimple Hermitian algebras very precise, at least for classical
Hermitian Lie group of tube type.

Theorem 1.6 The following classicalHermitian Lie groups of tube type can be realized
as symplectic groups over Hermitian algebras:

(1) Sp(2n, R) = Sp2(A, σ ), where A = Mat(n, R) is the algebra of n × n matrices
over R with involution σ : A → A given by σ(r) = rT .

(2) U(n, n) = Sp2(A, σ ), where A = Mat(n, C) is the algebra of n × n matrices
over C with involution σ : A → A given by σ(r) = r̄ T .

(3) SO∗(4n) = Sp2(A, σ ), where A = Mat(n, H) is the algebra of n × n matrices
overHwith involution σ : A → A given by σ : A → A is σ(r) = r̄ T = r̄ T1 −rT2 j
for r = r1 + r2 j and r1, r2 ∈ Mat(n, C).

Remark 1.7 The other classical Hermitian Lie group of tube type, SO0(2, n), cannot
be realized in the same way as Sp2(A, σ ). However its double cover Spin0(2, n)) can
be realized as Sp2 over a slightly more complicated object Bn , which is a Jordan subal-
gebra of an appropriate Clifford algebra (A, σ ). We will discuss this in a forthcoming
article.

The exceptional Hermitian Lie group of tube type cannot be realized as Sp2(A, σ ),
see Remark 3.27.

There are other Lie groups that can be realized as Sp2(A, σ ) over involutive algebras
(A, σ ) that are not Hermitian, see Sect. 3.4.1.
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For these Hermitian Lie groups of tube type, the above models for the symmetric
space XSp2(A,σ ) give the well known explicit models of Hermitian symmetric spaces.
The precompact model is the bounded symmetric domain model, and the space of
isotropic lines identifies with the Shilov boundary of the bounded symmetric domain
model.

In view of Theorems 1.6 and 1.4 classical Hermitian symmetric spaces of tube
type can be thought of as hyperbolic planes over noncommutative involutive algebra
(A, σ ).

As a Corollary of Theorem 1.6 we can realize the complexifications of Hermitian
Lie groups of tube type Sp2(A, σ ) as symplectic groups over complexifications of
Hermitian algebras.

Theorem 1.8 The following complex Lie groups can be realized as symplectic groups
over involutive algebras:

(1) Sp(2n, C) = Sp2(AC, σC), where A = Mat(n, R) is the algebra of n×n matrices
over R with involution σ : A → A given by σ(r) = rT .

(2) GL(2n, C) = Sp2(AC, σC), where A = Mat(n, C) is the algebra of n×n matrices
over C with involution σ : A → A given by σ(r) = r̄ T .

(3) O(4n, C) = Sp2(AC, σC), where A = Mat(n, H) is the algebra of n×n matrices
overHwith involution σ : A → A given by σ : A → A is σ(r) = r̄ T = r̄ T1 −rT2 j
for r = r1 + r2 j and r1, r2 ∈ Mat(n, C).

In particular, Theorem 1.5 applies andwe obtain explicit new realizations ofmodels
for the symmetric spaces associated to Sp(2n, C), GL(2n, C), and O(4n, C). We
illustrate here the upper half-space model for Sp(2n, C) and refer the reader to Sect. 7
for an explicit description of all the models for Sp(2n, C), GL(2n, C), and O(4n, C).

For Sp(2n, C), we consider again A = Mat(n, R) with the anti-involution σ given
by transposition. Then AC = Mat(n, C), σC is the transposition and Sp2(AC, σC) =
Sp(2n, C). The upper half-spacemodel of the symmetric space of Sp2(AC, σC) is then
(see Theorem 1.5(4))

U = {z1 + z2 j | z1 ∈ AσC
C

, z2 ∈ (Aσ̄C
C

)+}
= {z1 + z2 j | z1 ∈ Sym(n, C), z2 ∈ Herm+(n, C)}.

Structure of the paper: In Sect. 2 we discuss algebras A with anti-involution, and
introduce the notion of Hermitian algebra. A more general notion of pre-Hermitian
algebras and a classification of Hermitian algebras is given in Appendix A. In Sect. 3
we introduce the symplectic groups Sp2(A, σ ) over noncommutative rings and give
examples of classicalLie groups that are realized asSp2(A, σ ). InSect. 4we investigate
the action of Sp2(A, σ ) on the space of isotropic lines.We construct the variousmodels
of the symmetric space XSp2(A,σ ) in Sect. 5, and of the symmetric space XSp2(AC,σC)

in Sect. 6. In Sect. 7 we spell this construction out for the complexifications of the
Hermitian Lie groups of tube type, giving explicit models for the symmetric spaces
of Sp(2n, C), GL(2n, C), and O(4n, C).
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2 Algebras with anti-involution

In this section we consider algebras with anti-involutions and introduce basic notions
which play an important role throughout the paper.

2.1 Main definitions

LetK be a field and A a unital associative possibly noncommutative finite-dimensional
K-algebra. If K is a topological field, A has a well defined topology.

Definition 2.1 An anti-involution on A is a K-linear map σ : A → A such that

• σ(ab) = σ(b)σ (a);
• σ 2 = Id.

An involutive K-algebra is a pair (A, σ ), where A is a K-algebra and σ is an anti-
involution on A.

Remark 2.2 Sometimes in the literature the maps that satisfy Definition 2.1 are called
just involutions. We add the prefix “anti” in order to emphasise that they exchange the
factors.

Remark 2.3 Notice, since the algebra A is unital, we always have the canonical copy
of K in A, namely K · 1 where 1 is the unit of A. We will always identify K · 1 with K.
Moreover, since σ is linear, for all k ∈ K, σ(k · 1) = kσ(1) = k · 1, i.e. σ preserves
K · 1.
Definition 2.4 An element a ∈ A is called σ -normal if σ(a)a = aσ(a). An element
a ∈ A is calledσ -symmetric ifσ(a) = a. An elementa ∈ A is calledσ -anti-symmetric
if σ(a) = −a. We denote

Aσ := FixA(σ ) = {a ∈ A | σ(a) = a},
A−σ := FixA(−σ) = {a ∈ A | σ(a) = −a}.

Example 2.5 Typical examples of involutive algebras are given by matrix algebras: If
K is a field, then the space of K-valued n×n-matrices Mat(n, K)with anti-involution
given by the transposition is an involutive algebra.

If additionally K admits an involution δ : K → K, then Mat(n, K) with the anti-
involution δ ◦ σ is again an example of an involutive K-algebra.

Semisimple involutive finite-dimensional algebras over perfect fields with the addi-
tional assumption Aσ = K can be classified. To state the classification, we need the
following well-known definitions:

Definition 2.6 A field K is called perfect if every irreducible polynomial over K has
distinct roots in its splitting field.

Remark 2.7 Notice that every field of characteristic zero is perfect.
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Definition 2.8 A non-zero algebra is called simple if it has no two-sided ideal besides
the zero ideal and itself. A finite-dimensional algebra is called semisimple if it is
isomorphic to a product of simple algebras.

Theorem 2.9 Let K be a perfect field with char(K) �= 2 and (A, σ ) be a semisimple
finite-dimensional involutive algebra over K such that Aσ = K. Then either A is a
division algebra over K of dimension 1, 2 or 4, or A = K⊕K and the anti-involution
exchanges the two summands.

A proof of this statement will be given in Proposition A.31 and Theorem A.32.
We denote by A× the group of all invertible elements of A. If V ⊂ A is a vector

subspace, we denote

V× = A× ∩ V ,

the set of invertible elements in V . We consider the following map θ , that will play
the role of a norm on A

θ : A → Aσ

a �→ σ(a)a

Definition 2.10 The closed subgroup

U(A,σ ) = {a ∈ A× | θ(a) = 1}

of A× is called the unitary group of A. The Lie algebra of U(A,σ ) agrees with A−σ .

Definition 2.11 Let (A, σ ) be an algebra with an anti-involution. We define the set of
σ -positive elements by

Aσ+ :=
{

k∑
i=1

a2i

∣∣∣∣∣ ai ∈ (Aσ )×, k ∈ N

}
,

and the set of σ -non-negative elements by

Aσ≥0 :=
{

k∑
i=1

a2i

∣∣∣∣∣ ai ∈ Aσ , k ∈ N

}
.

Remark 2.12 If (A, σ ) is an algebra over an ordered fieldK, then Aσ≥0 is the topological
closure of Aσ+. This follows from Corollary 2.30.

We will now give the definition of a Hermitian algebra that will be a key notion in
this paper. Before this, we remind the well-known definition of a real closed field. A
real closed field is an ordered field K which is of index two in its algebraic closures.
Equivalently, it is an ordered field K in which every positive element of K is a square
and every odd degree polynomial has at least one zero.
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Definition 2.13 Let K be a real closed field. A unital associative K-algebra with an
anti-involution (A, σ ) is called Hermitian if for all x, y ∈ Aσ , x2 + y2 = 0 implies
x = y = 0.

Let K be a real closed field. Slightly abusing our notation, we denote the algebraic
closure of K by KC. Since K is real closed, KC = K[i] where i is a square root of
−1 called also the imaginary unit of KC. The field KC is called the complexification
of K. The involution ·̄ : KC → KC defined as 1̄ = 1, ī = −i is called the complex
conjugation. With this (anti-)involution, KC becomes a Hermitian algebra over K of
dimension 2. If K = R then as usual we denote C = RC.

For a real closed field K there exist a generalized quaternion skew-field KH defined
by the following presentation:

KH = {x0 + x1i + x2 j + x3k | i2 = j2 = −1, i j = − j i = k}.

If K = R, then RH is the classical quaternion skew-field that we will denote as usual
by H. We call KH the quaternionic extension of K. With the anti-involution ·̄ defined
as ī = −i , j̄ = − j , k̄ = −k and called the quaternionic conjugation, KH becomes a
Hermitian algebra over K of dimension 4. The elements i, j, k are called imaginary
units of KH.

Also the generalized octonionic algebraKO can be defined over any real closed field
K. This is the 8-dimendional non-associative noncommutative algebra that is generated
(as aK-vector space) by the unit 1 ∈ K and seven imaginary units i, j, k, E, I , J , K .
The multiplication rule of the imaginary units is the same as in the classical octonionic
O algebra over R.

Remark 2.14 Although in the notation of complexification and quaternionification we
use symbols C, H and O, we do not assume that C is a subfield of KC, H is a
subalgebra of KH and O is a subalgebra of KO. In the Appendix A, we consider other
division algebras over fields (not necessarily over real closed fields). In the notation
of Appendix A, KH = H−1,−1 and KO = O−1,−1.

Example 2.15 The main examples of real closed fields are R and the subfield of alge-
braic reals. An example of real closed field not contained into R is given by the field
of Puiseux series with real coefficients. Another example is the field of hyperreals.
The field Q is not real closed, since for example 2 is not a square.

Remark 2.16 Every real closed field has characteristic zero and contains the field of
algebraic reals as a subfield.

For real closed fields the following theorem holds:

Theorem 2.17 (Generalized Frobenius Theorem) Let K be a real closed field. Every
associative division algebra over K is isomorphic to K, KC or KH. The only non-
associative noncommutative division algebra over K is KO.

In caseK = R this theorem is the classical Frobenius theorem. The general version
of this theorem follows from the classical one using the Tarski–Seidenberg transfer
principle (see [7, Proposition 5.2.3]).
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Proposition 2.18 A subalgebra of a Hermitian algebra that is closed under the anti-
involution is Hermitian.

Example 2.19 The following matrix algebras provide examples of Hermitian R-
algebras: Mat(n, R) with the transposition and Mat(n, C) with the transposition
composed with the complex conjugation.

Semisimple finite-dimensional algebras over real closed fields with the additional
property Aσ = K are all Hermitian and can be classified as follows:

Corollary 2.20 Let (A, σ ) be a semisimple finite-dimensional algebra over K with
Aσ = K. Then one of the following cases holds:

(1) A = K, the anti-involution σ acts trivially;
(2) A = K ⊕ K, the anti-involution σ permutes copies of K, i.e. σ(x, y) = (y, x);
(3) A = KC, the anti-involution σ acts by complex conjugation;
(4) A = KH, the anti-involution σ acts by quaternionic conjugation.

In every case (A, σ ) is Hermitian. The bilinear form

β : A−σ × A−σ → K

(a, a′) �→ −aa′ − a′a

is an inner product on A−σ .

This follows from the Theorems 2.9 and 2.17.

Remark 2.21 The property to be Hermitian can also be defined in the same way for
algebras with an anti-involution over any field. In this paper, we are discussing only
Hermitian algebras over real closed fields. In the Appendix A, a larger class of Her-
mitian and pre-Hermitian rings is considered and classified.

Remark 2.22 Notice, if K is a real closed field and (A, σ ) is an involutive algebra over
K, then the addition and the multiplication in A as well as the anti-involution σ are
semi-algebraic maps and the spaces A, Aσ , A−σ , Aσ+, Aσ≥0,U(A,σ ) are semi-algebraic
sets.

Remark 2.23 We will see in Sect. 2.3 that if K is a real closed field and (A, σ ) is a
Hermitian algebra over K, then Aσ+ = {a2 | a ∈ (Aσ )×} and Aσ≥0 = {a2 | a ∈ Aσ }
are proper convex cones in Aσ .

2.2 Some properties

Proposition 2.24 Let K be a field and A be a unital associative K-algebra of finite
dimension n over K. Then A is isomorphic to a subalgebra ofMat(n, K).

Proof For every x ∈ A, consider the linear map Lx : A → A defined by

Lx (y) = xy.
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Consider the map

A � x → Lx ∈ Mat(n, K) .

This is an injective K-algebra homomorphism (there is no kernel because A is unital).

Definition 2.25 LetK be a field, A be a unital associative finite dimensionalK-algebra
and a ∈ A. An element λ ∈ K is called eigenvalue of a if a − λ · 1 is not invertible.
Remark 2.26 Notice that this definition of an eigenvalue works for non-associative
algebras as well.

Proposition 2.27 Let K be a field and A be a unital associative finite dimensional
K-algebra. Then a ∈ A is not invertible if and only if a is a zero divisor in K[a].
Proof Since A is of finite dimension over K, for every a ∈ A there exists k ≥ 0 such
that set {1, a, a2, . . . , ak−1} is linearly independent over K and {1, a, a2, . . . , ak}
is linearly dependent over K. This means that there exists a non-trivial polynomial
p ∈ K[X ] such that deg(p) = k and p(a) = 0. Without lost of generality, assume
p = ∑k

i=0 ci X
i , ci ∈ K and ck = 1.

First we note that if a is non-invertible, then p(0) = c0 = 0. Indeed, assume
p(0) = c0 ∈ K

×. Then

p(a) =
k∑

i=0

cia
i =

(
k−1∑
i=0

cia
i−1

)
a + c0 = 0.

This means that a is invertible and a−1 = −c−1
0 (
∑k−1

i=0 cia
i−1).

Now, since c0 = 0, we write p(X) = q(X)X where q ∈ K[X ] is a non-trivial
polynomial of degree k − 1. Hence, q(a) �= 0 and we obtain q(a)a = 0. That means,
a is a zero divisor in K[a].
Proposition 2.28 Let K be a field and A be a unital associative finite dimensional
K-algebra. Let a ∈ A and p ∈ K[X ] such that p(a) = 0, then p(λ) = 0 for all
eigenvalues λ of a. In particular, there are only finitely many eigenvalues of a.

Proof Let λ be an eigenvalue of a. Therefore, by previous Proposition, there exists
0 �= b ∈ K[a] with (a − λ · 1)b = 0. In particular, ab = λb and by induction
aib = ai−1(ab) = ai−1(λb) = λi b for all i ∈ N.

If p ∈ K[X ] be such that p(a) = 0, then p(a)b = 0. Since aib = λi b for all i ∈ N,
we obtain 0 = p(a)b = p(λ)b. But p(λ) ∈ K and b �= 0, therefore, p(λ) = 0.

Definition 2.29 We will say that a topological field has a non-trivial topology if its
topology is not discrete nor indiscrete.

The condition that the topology on a field is non-trivial is remarkably strong. Such
topologies are automatically T0, because the intersection of all the neighborhoods of 0
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must be an ideal, hence it is {0}. This implies that the topology is Hausdorff, from the
properties of topological groups. Fields with non-trivial topologies must be infinite: in
fact, for finite K, every one-point set is closed means that every one-point set is open
as complement of finite-point (closed) set, i.e. the topology is discrete. An important
example is an ordered field endowed with the order topology.

Proposition 2.30 Let K be a topological field with a non-trivial topology. Let A be a
unital associative finite-dimensional K-algebra, and let V be a vector subspace of A
that contains at least one invertible element. Then V× is an open dense subset of V .

Proof Notice that x ∈ A is invertible in A if and only if the linear map Lx is surjective,
which holds if and only if Lx is invertible in Mat(n, K). Since 0 ∈ K is closed, the
set of all invertible elements GL(n, K) = Mat(n, K)\det−1(0) ⊂ Mat(n, K) is open.
Hence, the intersection of GL(n, K) with V is open in V as well.

To see the density, consider an invertible element u ∈ V . The set u−1 · V is again
a vector subspace of A and contains the unit 1. It suffices to show that density holds
for u−1 · V . If x ∈ u−1 · V is not invertible, consider yε = x + ε · 1. By the previous
proposition, there are only finitely many values of ε such that yε is not invertible,
namely the opposites of eigenvalues of x .

Since K is infinite and non-discrete with closed points, there exists a (maybe
punctured) neighborhood U of 0 ∈ K that does not contain eigenvalues of x . Now
every open neighborhood of x intersects non-trivially the set {x + ε · 1 | ε ∈ U }.
To see this, we choose a basis (e1, . . . , en) of u−1 · V containing 1 = e1. Then
by definition of the product topology for every neighborhood W of x there exist a
neighborhood W ′ of 0 ∈ K such that W contains the following open neighborhood
{x +λ1e1 +· · ·+λnen | λi ∈ W ′}. SinceU ∩W ′ �= ∅,W ∩{x + ε · 1 | ε ∈ U } �= ∅.
This shows that V× is dense in V .

Corollary 2.31 For algebras (A, σ ) satisfying Corollary 2.30, A× is open and dense
in A, (Aσ )× is open and dense in Aσ .

When K is an ordered field, we will assume that it is endowed with the order
topology, which is always non-trivial. Recall that a subset C ⊂ V of a K-vector space
is a cone if it is stable under multiplication by a strictly positive scalar. A cone is
convex if it is stable by sums of its elements. If C is a convex cone, its closure C and
its interior C̊ are still convex cones. The set of the opposites of the elements of C ,
denoted by −C , is still a convex cone. A convex cone C is proper if

C ∩ −C = {0} .

IfC is a cone in some algebra overK, then we denote byC× the subset of all invertible
elements of C .

Similarly to Proposition 2.30 can be proven:

Proposition 2.32 Let K be an ordered field. Let A be a unital associative finite-
dimensional K-algebra, and let C be a convex cone of A that contains at least one
invertible element. Then C× is an open dense subcone of C.
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Remark 2.33 As we have seen in Remark 2.23, for Hermitian algebras, Aσ+ and Aσ≥0
are proper convex cones in Aσ . Proposition 2.32 implies that Aσ+ is open and dense in
Aσ≥0.

2.3 Jordan algebras and spectral theorem

In this section we recall the definitions of a Jordan algebra and formally real Jordan
algebra and prove some properties of formally real Jordan algebra that we will need
later. We also show how Jordan algebras arise from associative algebras.

Definition 2.34 Let (V , ◦) be an possibly non-associative unital algebra over some
field K. We denote by 1 the unit of V . (V , ◦) said to be a Jordan algebra if for all
x, y ∈ V

(1) x ◦ y = y ◦ x ;
(2) (x ◦ y) ◦ (x ◦ x) = x ◦ (y ◦ (x ◦ x)) (Jordan identity).

Every Jordan algebra is power associative, i.e.K[x] is associative for all x ∈ V (see
[9, Proposition II.1.2]). Therefore, instead of x ◦ · · · ◦ x (with n-factors) for x ∈ V ,
we can just write xn .

A Jordan algebra (V , ◦) over a real closed field is called formally real if for all
x, y ∈ V , x2 + y2 = 0 implies x, y = 0.

An element x ∈ V is called invertible if there exists y ∈ K[x] such that x ◦ y = 1.
Since K[x] is associative, y ∈ K[x] is unique. The element y is called the inverse and
is denoted by y = x−1.

The following is immediate:

Proposition 2.35 Let (A, σ ) be a finite dimensional algebra with anti-involution, then
the following hold:

• The algebra (Aσ , ◦) is a Jordan algebra where

x ◦ y = xy + yx

2
.

• If (A, σ ) is Hermitian, the Jordan algebra (Aσ , ◦) is formally real.

Jordan algebras that arise form associative algebras as in 2.35 are called special
Jordan algebras. All other Jordan algebras are called exceptional Jordan algebras.

In this section we establish some properties of formally real Jordan algebras. We
do not assume that they are necessarily special.

Let (V , ◦) be a formally real Jordan algebra over a real closed field K. We use the
following notation:

V+ =
{

n∑
i=1

a2i

∣∣∣∣∣ ai ∈ V×, n ∈ N

}
,

V≥0 =
{

n∑
i=1

a2i

∣∣∣∣∣ ai ∈ V , n ∈ N

}
.
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These are clearly proper convex cones in V .

Definition 2.36 An element c ∈ V is called an idempotent if c2 = c.

• Two idempotents c, c′ ∈ V are called orthogonal if c ◦ c′ = 0.
• A tuple (c1, . . . , ck) of pairwise orthogonal idempotents is called a complete
orthogonal system of idempotents if c1 + · · · + ck = 1.

Remark 2.37 Note that every idempotent c satisfies c ∈ V≥0. Moreover, if c �= 1, then
c ∈ V≥0 \ V+

Theorem 2.38 (Spectral theorem,first version)Let V bea formally real Jordanalgebra
over a real closed fieldK. For every b ∈ V , there exist a unique k ∈ N, unique elements
λ1, . . . , λk ∈ K, all distinct, and a unique complete system of orthogonal idempotents
c1, . . . , ck ∈ K[b] ⊆ V such that

b =
k∑

i=1

λi ci .

We call this the spectral decomposition of b. Moreover, K[b] = K[c1, . . . , ck].
For a proof of this theorem for real Jordan algebras see [9, Theorem III.1.1]. A

proof for general real closed fields is identical. The assertion K[b] = K[c1, . . . , ck]
follows from the fact that K[b] ⊆ K[c1, . . . , ck] ⊆ K[b].

We collect some direct consequences of Theorem 2.38.

Corollary 2.39 Let (V , ◦) be a formally real Jordan algebra and c1, c2 ∈ V be two
orthogonal idempotents. There exists an a ∈ V such that c1, c2 ∈ K[a]. If V = Aσ

for an associative Hermitian algebra (A, σ ), then c1c2 = 0.

Proof Weconsidera := c1−c2. This is the spectral decomposition ofa. By the spectral
theorem, c1, c2 ∈ K[a]. Let V = Aσ for an Hermitian algebra. Since c1, c2 ∈ K[a],
they commute with respect to the product of A. Therefore, 0 = c1 ◦ c2 = c1c2.

Corollary 2.40 The set of all invertible elements V× of V consists of elements such
that in the spectral decomposition we have λi �= 0 for all i . If all λi �= 0, then

(
k∑

i=1

λi ci

)−1

=
k∑

i=1

λ−1
i ci .

Proof Let b = ∑k
i=1 λi ci be the spectral decomposition of b ∈ V . Assume first that

λi �= 0 for all i ∈ {1, . . . , k}. We take b′ = ∑k
i=1 λ−1

i ci . Because b′ ∈ K[c1, . . . , ck]
and b ◦ b′ = 1, we obtain b′ = b−1.

Assume now without loss of generality that λ1 = 0. We take any element b′ =∑k
i=1 λ′

i ci ∈ K[b] = K[c1, . . . , ck]. Then b ◦ b′ = ∑k
i=2 λiλ

′
i ci �= 1 for any b′ ∈

K[b]. Therefore, b is not invertible.



82 Page 18 of 119 D. Alessandrini et al.

Corollary 2.41 For b ∈ V≥0, we have λ1, . . . , λk ≥ 0. If b ∈ V+, we have moreover,
λ1, . . . , λk > 0. Moreover, V≥0 = {a2 | a ∈ V }, V+ = {a2 | a ∈ V×}.
Proof By [13, Lemma 2.9.4] a sum of squares in a formally real Jordan algebra is
always a square. All eigenvalues of a square are non-negative.

Let now a ∈ V×, by the previous corollary, all the eigenvalues of a are non-zero.
Therefore, all the eigenvalues of a2 are positive. Letλmin(x) be theminimal eigenvalue
of x ∈ V . Then λmin(a2) > 0. Moreover, a2 = λmin(a2) · 1 + a′ for a′ ∈ V . All the
eigenvalues of a′ are non-negative. Therefore, a′ = b2 for an element b ∈ V .

We take now a sum
∑n

i=1 a
2
i ∈ V+ with ai ∈ V×. Then:

n∑
i=1

a2i =
n∑

i=1

λmin(a
2
i ) · 1 +

n∑
i=1

b2i .

Since
∑n

i=1 b
2
i = b2 for some b ∈ V , we obtain

n∑
i=1

a2i =
n∑

i=1

λmin(a
2
i ) · 1 + b2 = x

with λmin(x) ≥ ∑n
i=1 λmin(a2i ) > 0. In particular, x is a square of an invertible

element of V .

Corollary 2.42 For every (continuous/smooth) function f : K → K, the (continu-
ous/smooth) map

f̂ : V → V

can be defined: if

b =
k∑

i=1

λi ci ,

then

f̂ (b) :=
k∑

i=1

f (λi )ci .

This map is well defined because the spectral decomposition is unique. Analogously,
for any function f : K≥0 → K or f : K+ → K, f̂ : V≥0 → V resp. f̂ : V+ → V can
be defined.

In particular, for every b ∈ V≥0, the element bt ∈ V≥0 for t ∈ Q+ is well-defined
(If K = R it is even well-defined for all t ∈ R+). This definition is compatible with
integer powers of elements.
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Proposition 2.43 • The space V+ is semi-algebraically contractible. The set {1} is a
semi-algebraic deformation retract of V+. In particular, V+ is semi-algebraically
connected.

• The space V≥0 is semi-algebraically contractible. The set {1} is a semi-algebraic
deformation retract of V≥0. In particular, V≥0 is semi-algebraically connected.

Proof We consider the following continuous semi-algebraic map: H(t, a) = t · a +
(1 − t) · 1 where t ∈ [0, 1] = {s ∈ K | 0 ≤ s ≤ 1} ⊂ K, a ∈ V+. Since,
H(t, a) = ∑k

i=1(λi t + (1 − t))ci where (ci ) is a complete system of orthogonal
idempotents in the spectral decomposition of a. Since all λi are positive, the convex
combination λi t + (1− t) is positive for all t ∈ [0, 1]. Therefore, H(t, a) ∈ V+ for all
t ∈ [0, 1], a ∈ V+. Moreover, H(1, a) = a and H(0, a) = 1, i.e. H is a contraction
and {1} is a semi-algebraic deformation retract of V+.

The same contraction works also for V≥0.

Corollary 2.44 Let K = R. The space V+ is (non-semi-algebraically) homeomorphic
to V . In particular, V+ is open in V and contractible, and {1} ⊂ V+ is a deformation
retract of V+.

Proof The map f (t) = log(t) gives a homeomorphism between V+ and V . The rest
follows from 2.43.

We now state the second version of the spectral theorem. For this we need to give
some additional definitions:

Definition 2.45 An idempotent 0 �= c ∈ V is called primitive if it cannot be written
as a sum of two orthogonal non-zero idempotents.

• A complete orthogonal system of primitive idempotents (c1, . . . , ck) is called a
Jordan frame.

• The maximal number of elements in a Jordan frame is called the rank of a Jordan
algebra.

Theorem 2.46 (Spectral theorem, second version) Let V be a formally real Jor-
dan algebra over a real closed field K. Suppose that V has rank n. For every
b ∈ V there exist a Jordan frame (e1, . . . , en) and a unique n-tuple of elements
(λ1(b), . . . , λn(b)) ∈ K

n such that λ1(b) ≥ · · · ≥ λn(b) and

b =
n∑

i=1

λi (b)ei .

The elements λ1(b), . . . , λn(b) ∈ K (with their multiplicities) are called the eigen-
values of b are uniquely determined by b. In particular, they do not depend (up to
permutations) on the Jordan frame e1, . . . , en ∈ V .

For a proof of this theorem for real Jordan algebras see [9, Theorem III.1.2]. The
proof for a general real closed field is identical.
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Remark 2.47 A Jordan frame e1, . . . , en ∈ V associated to the element b ∈ V by
Theorem 2.46 is in general not unique and elements e1, . . . , en /∈ K[b], in contrast to
the complete system of orthogonal idempotents from Theorem 2.38.

Remark 2.48 In Definition 2.25 we already defined eigenvalues for elements of an
associative algebras. This definition works also for non-associative algebras (see
Remark 2.26). If V is a formally real Jordan algebra, then the eigenvalues defined
by the spectral theorem agree with the eigenvalues defined in Definition 2.25.

Definition 2.49 The signature of an element b ∈ V is a pair (p, q)with p, q ∈ N∪{0}
such that b has p positive eigenvalues and q negative eigenvalues in the spectral
decomposition defined in 2.46.

Remark 2.50 Notice that for an element b of signature (p, q), p + q ≤ n, moreover,
p + q = n if and only if b is invertible.

Definition 2.51 Let b ∈ V and λ1(b), . . . , λn(b) are all its eigenvalues with multiplic-
ities. We define the eigenvalue map:

λ : V �→ K
n

b → (λ1(b), . . . , λn(b)),

and the trace and the determinant maps:

tr(b) :=
n∑

i=1

λi (b), det(b) :=
n∏

i=1

λi (b).

Remark 2.52 Since the eigenvalues defined by the spectral theorem and eigenvalues
defined in 2.25 agree, the eigenvalue map is semi-algebraic. The eigenvalue map is
continuous. For a proof when K = R see [3, Corollary 24]. For a general real closed
field the proof is identical.

Corollary 2.53 The function

β : V × V → K

(b1, b2) �→ tr (b1 ◦ b2)

is an inner product on V , where V is intended as a K-vector space.

Corollary 2.54 • The set V+ is an open and closed proper convex cone in V×. In
particular, V+ is a semi-algebraic connected component of V×.

• The set V≥0 is a closed proper convex cone in V .

Proof We already know that V+ and V≥0 are proper convex cones in V× and in V
respectively.

The set V+ = λ−1(Kn+) is open and closed in V× = λ−1((K \ {0})n). In par-
ticular, V+ is a semi-algebraic connected component of V because by 2.43 V+ is
semi-algebraically connected.

The set V≥0 = λ−1(Kn≥0) is closed in V .
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2.4 Classification of simple formally real Jordan algebras

In this section, we recall the well-known classification of simple formally real Jordan
algebras over R and generalize it to all real closed fields.

Theorem 2.55 Every simple formally real Jordan algebra over a real closed field K

is isomorphic to one of the following Jordan algebras:

(1) Symmetric real matrices (Sym(n, K), ◦) where a ◦ b = ab+ba
2 for a, b ∈

Sym(n, K);
(2) Hermitian complex matrices (Herm(n, KC), ◦) where a ◦ b = ab+ba

2 for a, b ∈
Herm(n, KC);

(3) Hermitian quaternionic matrices (Herm(n, KH), ◦) where a ◦ b = ab+ba
2 for

a, b ∈ Herm(n, KH);
(4) (Bn, ◦) where Bn = SpanK(1, x1, . . . , xn) with 1◦ xi = xi , xi ◦ x j = 0 for i �= j ,

xi ◦ xi = 1 for all i, j ∈ {1, . . . , n};
(5) Hermitian octonionic 3× 3 matrices (Herm(3, KO), ◦) where a ◦ b = ab+ba

2 for
a, b ∈ Herm(3, KO).

In case K = R this theorem agrees with the classification of formally real Jordan
algebras over R that is proven in [9, 13]. The general version of this classification
follows from the classification in case K = R using the Tarski–Seidenberg transfer
principle (see [7, Proposition 5.2.3]).

The Jordan algebras (1)–(3) from 2.55 can be seen as Aσ for certain simple algebras
(A, σ ). Let K be a real closed field.

(1) Symmetric real matrices: A = Mat(n, K), σ(r) := rT is an algebra with an anti-
involution. Then Aσ = Sym(n, K) space of all symmetric matrices. The algebra
(A, σ ) is Hermitian with Aσ+ = Sym+(n, K) real symmetric positive definite
matrices.

(2) Hermitian complexmatrices: A = Mat(n, KC), σ̄ (r) := r̄ T is aHermitian algebra
with Aσ̄ = Herm(n, KC) complex Hermitian matrices and Aσ̄+ = Herm+(n, KC)

complex Hermitian positive definite matrices.
(3) Hermitian quaternionic matrices: A = Mat(n, KH), σ̄ (r) := r̄ T , is a Hermitian

algebra with Aσ̄ = Herm(n, KH) quaternionic Hermitian matrices and Aσ̄+ =
Herm+(n, KH) quaternionic Hermitian positive definite matrices.
There is another anti-involution on A = Mat(n, KH), namely σ1(r) := σ(r1) +
σ̄ (r2) j where r = r1 + r2 j and r1, r2 ∈ Mat(n, KC). This algebra (A, σ1) is not
Hermitian.

Fact 2.56 ([13, Corollary 2.8.5])The Jordan algebra (Herm(3, KO), ◦) is exceptional.
This means that there is no associative real algebra A that contains Herm(3, KO) as
a Jordan subalgebra.

Remark 2.57 The Jordan algebra (Bn, ◦) can be embedded as a Jordan subalgebra
into the even Clifford algebra Cleven(1, n) for some appropriate anti-involution σ , but
Cl(1, n)σ is strictly bigger than Bn for n > 2. In the case n = 2, Cl(1, 2) is isomorphic
to Mat(2, K) as an associative algebra, and B2 is isomorphic to Sym(2, n) as a Jordan
algebra.
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2.5 Positivity of the norm

Let K be a real closed field and (A, σ ) be a Hermitian semisimple algebra over K.
The goal of this subsection is to show that θ(a) = σ(a)a ∈ Aσ≥0 for all a ∈ A. To do
it, first, we prove some technical propositions.

Proposition 2.58 Let (A, σ ) be a Hermitian semisimple algebra, then −a2 ∈ Aσ≥0 for
every a ∈ A−σ .

Proof We prove it by induction on the rank of A. If its rank is one, then the statement
follows from the Corollary 2.20.

Let now rank of A be equal n > 1 and we assume that for every Hermitian semisim-
ple algebra A′ of rank smaller then n, the Proposition holds. Take a ∈ A−σ , then
a2 ∈ Aσ . We consider a spectral decomposition:

a2 =
n∑

i=1

λi ei

where (ei )ni=1 is a Jordan frame. We denote

E :=
n−1∑
i=1

ei , e := en .

Then E + e = 1, eE = Ee = 0, and algebras (E AE, σ ) and (eAe, σ ) are Hermitian
semisimple subalgebras of A of rank strictly smaller then rank of A. Therefore,

a2 =(EaE + Eae + eaE + eae)2 = EaEaE + eaeae + (eaEae + EaeaE)

+ (Eaeae + EaEae) + (eaeaE + eaEaE).

Since EaEaE = (EaE)2 and EaE ∈ (E AE)−σ , we have−EaEaE ∈ (E AE)σ≥0 ⊆
Aσ≥0. The same holds for −eaeae. Further,

−(eaEae + EaeaE) = (eaE − Eae)2 ∈ Aσ≥0

because eaE − Eae ∈ Aσ . Finally,

Eaeae + EaEae = Ea(E + e)ae = Ea2e = 0

beacsue of the spectral decomposition of a2 and eE = Ee = 0. The same holds for
eaeaE + eaEaE .

Proposition 2.59 Let (A, σ ) be a Hermitian semisimple algebra and x ∈ A satisfy the
property σ(x)x = 0, then x = 0.
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Proof We denote: A0 := {x ∈ A | σ(x)x = 0}. First, note that σ(x)x = 0 if
and only if xσ(x) = 0. Indeed, let σ(x)x = 0, then xσ(x) ∈ Aσ and (xσ(x))2 =
xσ(x)xσ(x) = 0. Therefore, since A is Hermitian, xσ(x) = 0.

Further, write x = xs + xa where xs ∈ Aσ , xa ∈ A−σ . Then

σ(x)x = (xs)2 − (xa)2 + xs xa − xaxs = 0 = xσ(x) = (xs)2

−(xa)2 − xs xa + xaxs .

Therefore, xs xa − xaxs = 0 and (xs)2 − (xa)2 = 0. Since (xs)2,−(xa)2 ∈ Aσ≥0 and
Aσ≥0 is a proper convex cone, xs = 0 and (xa)2 = 0. Therefore 1 + xa = 1 + x is
invertible and (1 + x)−1 = 1 − x .

Let r ∈ A, consider y = xr . Then σ(y)y = σ(r)σ (x)xr = 0, i.e. y ∈ A0.
Further, take r ′ ∈ A and consider z = r ′y, then zσ(z) = 0. Therefore, as we have
seen, σ(z)z = 0 and z ∈ A0. That means, for every r , r ′ ∈ A, 1 + r ′xr ∈ A×, i.e.
x ∈ J (A) where J (A) is the Jacobson radical of A (see Definition A.1). Because A
is semisimple, J (A) = {0}.

Let K be a real closed field. As before we denote by KC the algebraic closure of K.

Proposition 2.60 Let (A, σ ) be aHermitian semisimple algebra, then the complexified
algebra (AC, σ̄C), where AC = A ⊗K KC and σ̄C the complex anti-linear extension
of σ (i.e. σ̄ (x + iy) = σ(x) − iσ(y) for x, y ∈ A), is semisimple and Hermitian as
an involutive algebra over K.

Proof The algebra (AC, σ̄C) is clearly unital and associative. We check now that, if
x2 + y2 = 0, then x = y = 0 ∈ Aσ̄C

C
.

For x ∈ Aσ̄C
C

we write x = x1 + i x2, x1, x2 ∈ A. Since σ̄C(x) = σ(x1) − iσ(x2),
x1 ∈ Aσ , x2 ∈ A−σ . Further,

x2 + y2 = x21 + y21 − x22 − y22 + i(x1y2 + y1x2 + x2y1 + y2x1) = 0.

Since x21 , y
2
1 ,−x22 ,−y22 ∈ Aσ≥0, we have x

2
1 = y21 = −x22 = −y22 = 0. Therefore, by

Proposition 2.59, x1 = x2 = y1 = y2 = 0, i.e. x = y = 0.
Assume now that AC is not semisimple, i.e. the Jacobson radical J (AC) of AC is

non-trivial. Let 0 �= x ∈ J (AC), then by A.9, σ̄C(x) = −x and x2 = 0. Therefore,
σ̄C(i x) = i x , i.e. i x ∈ Aσ̄C

C
and (i x)2 = 0. This contradicts to the property to be

Hermitian for (AC, σ̄C).

We remind that a semi-algebraic path in A is a continuous semi-algebraic map
γ : [0, 1] → A where [0, 1] := {s ∈ K | 0 ≤ s ≤ 1}. A semi-algebraic subset X ⊆ A
is semi-algebraically connected if there exists a semi-algebraic path between every
twopoints of X . This is equivalent to say that X is not a disjoint union of two non-empty
semi-algebraic open subsets of X (for more details see [7, Sections 2.4, 2.5]).

Proposition 2.61 Let Y be a finite dimensional KC-algebra, V ⊆ Y be a KC-vector
subspace. Then V× is semi-algebraically connected.
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Proof If V× = ∅ then V× is semi-algebraically connected.
Assume now that 1 ∈ V× �= ∅. As we have seen in the Proposition 2.24, Y can

be embedded as a subalgebra into Mat(r , KC) for some r ∈ N. We identify Y as a
subalgebra of Mat(r , KC).

Let a ∈ V× ⊆ GL(n, KC). We consider

S1
KC

:= {x + iy ∈ KC | x, y ∈ K, x2 + y2 = 1}.

Notice, that S1
KC

is a semi-algebraically connected set. In particular, it has infinitely
many points. Since a has only finitely many eigenvalues, and 0 is not one of them,
there is a point z ∈ S1

KC
⊂ KC such that the K-line {t z | t ∈ K} in KC through

the origin containing z does not intersect any of the eigenvalues of a. Now, consider
the K-path f (t) = at + z(1 − t) Id, t ∈ [0, 1] = {s ∈ K | 0 ≤ s ≤ 1} ⊂ K. It
lies completely in V because it is a C-vector space. This has determinant 0 if and
only if z(t − 1) is an eigenvalue of at , which happens if and only if z(1 − t)/t is an
eigenvalue of a (this does not work when t = 0, but then it is clear that the determinant
is non-zero). By construction, it is not the case for any t ∈ [0, 1] ⊂ K, so this defines
a path form a to z Id. Now, there is a path in KC not passing through 0 from z to 1,
and, since {z Id | z ∈ S1

KC
} ⊂ V×, this gives rise to a semi-algebraic path in A×

C
from

z Id to Id, and so concatenating these two paths, we get a path from a to Id that lies in
V×, showing that V× is semi-algebraically connected.

Finally, if 1 /∈ V× but there exists v ∈ V×, then V× is semi-algebraically con-
nected if and only if (v−1V )× = v−1(V×) is semi-algebraically connected.Moreover,
v−1V is also a KC-vector space and 1 ∈ (v−1V )×. So (v−1V )× is semi-algebraically
connected and, therefore, V× is semi-algebraically connected as well.

Now we are ready to prove the following

Theorem 2.62 Let (A, σ ) be a Hermitian semisimple algebra, then σ(a)a ∈ Aσ≥0 for
all a ∈ A. In particular, Aσ+ = θ(A×) and Aσ≥0 = θ(A).

Proof First, we embed (A, σ ) into its complexification (AC, σ̄C) that is Hermitian
as well. Let a ∈ A× ⊂ A×

C
. Since A×

C
is semi-algebraically connected, we take a

semi-algebraic path γ : [0, 1] → A×
C
such that γ (0) = a, γ (1) = 1 ∈ A. The eigen-

value map: λ(σ(γ (t))γ (t)) takes values in the semi-algebraic connected component
of (1, . . . , 1) ∈ (K \ {0})n , i.e. in K

n+. In particular, λ(σ(a)a) = λ(σ(γ (0))γ (0)) is

positive meaning that a ∈ Aσ+ ⊂ (Aσ̄C
C

)+.
Since A is the closure of A×, the eigenvalue map takes values in the closure of the

connected component of (1, . . . , 1) ∈ (K \ {0})n , i.e. all eigenvalues of σ(a)a are
non-negative for a ∈ A.

Remark 2.63 We conjecture that the Theorem 2.62 holds also for non-semisimple
Hermitian algebras.

Definition 2.64 Let V be a formally real Jordan algebra over a real closed field K and
V+ be the cone of positive elements of V . The group of all linear transformations of
V (as K-vector space) which preserve V+ is called structure group of V and denoted
by G(V ).
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Corollary 2.65 The group A× acts on Aσ preserving Aσ+ in the following way:

ψ : A× × Aσ �→ Aσ

(a, b) → σ(a)ba.

In other words,ψ(A×) is a subgroup of G(Aσ ). Moreover, the restriction of this action
to Aσ+ is transitive.

2.6 Polar decomposition

Let (A, σ ) to be a Hermitian algebra. From now on, we always assume the algebra A
to be semisimple.

Theorem 2.66 (Polar decomposition, first version) The map

pol : U(A,σ ) × Aσ+ → A×
(u, b) �→ ub

is a semi-algebraic homeomorphism. In particular, for every g ∈ A× there exist unique
b ∈ Aσ+ and u ∈ U(A,σ ) such that g = ub.

Proof The map pol is well-defined because Aσ+ ⊆ A×. First, we prove the surjectivity.
Take g ∈ A×, then σ(g)g ∈ Aσ+ by Proposition 2.62. Take b := (σ (g)g)

1
2 , then

u := g(σ (g)g)− 1
2 ∈ U(A,σ ). Indeed,

σ(u)u = (σ (g)g)−
1
2 σ(g)g(σ (g)g)−

1
2 = 1.

Now,we prove the injectivity. Let g = ub = u′b′ where u, u′ ∈ U(A,σ ), b, b′ ∈ Aσ+.
Then σ(g)g = (b′)2 = b2 ∈ Aσ+. We take the spectral decompositions of b and b′:

b =
k∑

i=1

λi ci , b′ =
k′∑
i=1

λ′
i c

′
i

where all k, k′ ∈ N, λi , λ
′
i > 0 and {ci }, {c′

i } are complete orthogonal systems of
idempotents of Aσ . Then

b2 =
k∑

i=1

λ2i ci =
k′∑
i=1

(λ′
i )
2c′

i = (b′)2.

Because of the uniqueness of the spectral decomposition, k = k′ and, up to reordering,
all λ2i = (λ′

i )
2, ci = c′

i . But all λi > 0, therefore, λi = λ′
i , i.e. b = b′ and u = gb−1 =

g(b′)−1 = u′.
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Finally, by definition, pol is continuous. Moreover,

pol−1(g) = (g(σ (g)g))−
1
2 , (σ (g)g))

1
2 )

is continuous as well and contains only semi-algebraic operations. Therefore, pol is a
semi-algebraic homeomorphism.

Corollary 2.67 The map

Aσ+ ×U(A,σ ) → A×
(b, u) �→ bu

is a semi-algebraic homeomorphism. In particular, for every g ∈ A× there exist unique
b ∈ Aσ+ and u ∈ U(A,σ ) such that g = bu.

Corollary 2.68 The group U(A,σ ) < A× is a semi-algebraic deformation retract of
A×.

Proof This follows from the polar decomposition 2.66 and from 2.43.

Proposition 2.69 The following K-bilinear form β : A × A → K:

β(a1, a2) := tr

(
σ(a1)a2 + σ(a2)a1

2

)

on A is positive definite. The groupU(A,σ ) acts on A by the left and right multiplication
preserving β.

Proof The map β is K-bilinear on A. Moreover, β(a, a) = tr(σ (a)a) ≥ 0 for all
a ∈ A because σ(a)a ∈ Aσ≥0.

Ifβ(a, a) = 0, then all eigenvalues of σ(a)a are zero, i.e. σ(a)a = 0 and, therefore,
because of semisimplicity of A we have a = 0 (see Proposition 2.59).

The form β is invariant under the left and right action by multiplication of U(A,σ )

because the trace is invariant under conjugation.

Corollary 2.70 The adjoint action of U(A,σ ) on A preserves β. In particular, the Lie
algebra A−σ of U(A,σ ) is compact.

Corollary 2.71 With respect to the norm induced by the inner product β on A, the
following subsets of A are closed, bounded and semi-algebraic:

• the group U(A,σ );
• D(A, σ ) := {a ∈ A | 1 − σ(a)a ∈ Aσ≥0}.

In particular, for every vector subspace V of A, the set

D(V , σ ) := {a ∈ V | 1 − σ(a)a ∈ Aσ≥0} = D(A, σ ) ∩ V

closed, bounded and semi-algebraic.



Symplectic groups over noncommutative algebras Page 27 of 119 82

We remind the definition of a derivation of a Jordan algebra:

Definition 2.72 Let V be a Jordan algebra over somefieldK. AK-linearmap D : V →
V is called a derivation if D(xy) = D(x)y + xD(y) for all x, y ∈ V . The space of
all derivations of V is denoted by Der(V ).

Remark 2.73 The space Der(V ) is a subspace of the space of all K-vector space endo-
morphisms End(V ) of V . Moreover, Der(V ) is a Lie algebra with respect to the
commutator and it agrees with the Lie algebra of the group of all Jordan algebra
automorphisms Aut(V ) of V .

Proposition 2.74 Let (A, σ ) be a semisimple associative algebra over some field K.
The map ad : A−σ → Der(Aσ ), ad(u)a := ua − au for u ∈ A−σ , a ∈ Aσ is a
surjective homomorphism of Lie algebras.

Proof Aswehave seen before, for all u ∈ A−σ and for alla ∈ Aσ , ad(u)a = ua−au ∈
Aσ . Moreover, it is easy to see that ad(u) is a derivation for all u ∈ A−σ and that ad
is a Lie algebra homomorphism. Therefore, ad(A−σ ) ⊆ Der(Aσ ).

Since A is semisimple, Aσ is a semisimple Jordan algebra. Every derivation of a
semisimple Jordan algebra is inner (see [14, Theorem 2]), i.e. for every derivation D ∈
Der(Aσ ) there exist a1, a2 ∈ Aσ such that for all a ∈ Aσ , D(a) = ad([a1, a2])a =
[a1, a2]a−a[a1, a2], where [·, ·] is the commutator on A. Finally, notice that [a1, a2] ∈
A−σ for a1, a2 ∈ Aσ . That means that ad(A−σ ) = Der(A, σ ).

Corollary 2.75 Let (A, σ ) be a semisimple associative algebra over a real closed field
K. The semi-algebraic connected component of the identity Aut0(Aσ ) of the auto-
morphism group Aut(Aσ ) of the Jordan algebra Aσ agrees with the semi-algebraic
connected component of the identity of the group Ad(U(A,σ )) where Ad is the adjoint
Lie group action on its Lie algebra.

Proof This statement follows from the fact that Lie(U(A,σ )) = A−σ , Lie(Aut(Aσ )) =
Der(Aσ ) and the derivative of the adjoint action Ad is ad.

Corollary 2.76 Let (A, σ ) be a semisimple Hermitian algebra over a real closed field
K such that the Jordan algebra Aσ is simple. Then U(A,σ ) acts transitively on the set
of all Jordan frames of Aσ .

Proof This statement follows from the fact that Aut0(Aσ ) acts transitively on the set
of all Jordan frames of Aσ (see [9, Corollary IV.2.6] for a proof over R, general case
follows identically).

Corollary 2.77 (Sylvester’s law of inertia) Let (A, σ ) be a semisimple Hermitian alge-
bra over a real closed field K such that the Jordan algebra Aσ is simple. The action

ψ : A× × Aσ �→ Aσ

(a, b) → σ(a)ba.

of the group A× on Aσ preserves the signature of elements. The orbits of this action
are precisely the sets of all elements of fixed signature in Aσ .
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Proof Let k be the rank of Aσ . We fix a Jordan frame (ei )ki=1 and denote: op,q :=∑p
i=1 ei −∑q

i=1 ek−i+1 for p + q ≤ k. First notice that for every element b ∈ Aσ of
signature (p, q) there is an element g ∈ A× such that op,q = σ(g)b1g. To see this,
first, we take a spectral decomposition b = ∑k

i=1 λi ci for a Jordan frame (ci )ki=1 and
λ1 ≥ · · · ≥ λk . Let u ∈ U(A,σ ) such that u maps the Jordan frame (ci )ki=1 to (ei )ki=1.

Therefore: σ(u)bu = ∑k
i=1 λi ei . Finally, we take a := ∑k

i=1 μi ei where μi = λ−1
i

if λi �= 0 and μi = 1 otherwise. Then σ(ua)b(ua) = op,q .
The structure group G(Aσ ) acts on Aσ preserving the signature (see

[15, Theorem 1]). Therefore, A× does it as well.

2.7 Matrix algebra over a Hermitian algebra

One way to construct new semisimple Hermitian algebras is to consider a matrix alge-
bra over a semisimpleHermitian algebra. For this,we assume (A, σ ) to be a semisimple
Hermitian algebra. We consider the following anti-involution on the algebra Matn(A)

of n × n-matrices over A:

σ T : Matn(A) → Matn(A)

M �→ σ(M)T

where σ(M) means applying σ componentwise to elements of the matrix M ∈
Matn(A). We denote

Symn(A, σ ) := FixMatn(A)(σ
T );

Sym≥0
n (A, σ ) := {M ∈ Symn(A, σ ) | σ(x)T Mx ∈ Aσ≥0 for all x ∈ An};

Sym+
n (A, σ ) := {M ∈ Symn(A, σ ) | σ(x)T Mx ∈ Aσ+ for all regular x ∈ An};

Un(A, σ ) := U(Mat×n (A),σ T ) = {M ∈ Matn(A) | σ(M)T M = Idn}.

Proposition 2.78 For a Hermitian semisimple algebra (A, σ ), the algebra
(Matn(A), σ T ) is Hermitian and semisimple.

Proof First, we have to check that for every twoM, N ∈ Symn(A, σ ), ifM2+N 2 = 0,
then M = N = 0.

Note that for every x ∈ An , if σ(x)T x = 0, then x = 0. Indeed, take x =
(x1, . . . , xn)T such that σ(x)T x = σ(x1)x1 +· · ·+σ(xn)xn = 0. Since all σ(xi )xi ∈
Aσ≥0, all σ(xi )xi = 0. Because of semisimplicity of A, all xi = 0.

Now, take x ∈ An and consider Mx, Nx ∈ An . Assume M2 + N 2 = 0, then

0 = σ(x)T (M2 + N 2)x = σ(x)T M2x + σ(x)T N 2x = σ(Mx)T Mx + σ(Nx)T Nx .

Since for every y ∈ An , σ(y)T y ∈ Aσ≥0, σ(Mx)T Mx, σ (Nx)T Nx = 0, By semisim-
plicity of A, Mx = Nx = 0 for all x ∈ An . Therefore, M = N = 0.

Finally, we have to check that Matn(A) is semisimple. We do it by induction.
Assume Matk(A) is semisimple for all k < n. Take X ∈ J := J (Matn(A)) in the



Symplectic groups over noncommutative algebras Page 29 of 119 82

Jacobson radical of Matn(A) (see Definition A.1), we write X as a block matrix:

X =
(
x a
b y

)

where x ∈ Matn−1(A), a, bT ∈ An−1, y ∈ A. Since X ∈ J by Proposition A.9,
σ T (X) = −X and X2 = 0, i.e. σ(x)T = x , b = −σ(a)T , y ∈ A−σ ,

X2 =
(

x2 − aσ(a)T xa + ay
−σ(a)T x − yσ(a)T −σ(a)T a + y2

)
= 0.

Since 0 = σ(a)T a − y2 = σ(a)T a + σ(y)y and σ(a)T a, σ (y)y ∈ Aσ≥0, σ(a)T a =
σ(y)y = 0. Because of semisimplicity of A, a = 0, y = 0. Moreover, since x2 −
aσ(a)T = x2 = 0 and Matn−1(A) is semisimple, x = 0, i.e. X = 0. Therefore,
J = {0} and Matn(A) is semisimple.

2.8 Complex extensions of algebras

Let A be an algebra over a real closed fieldK. We denote AC := A⊗KKC and call AC

the complexification of A. We extend σ “complex anti-linearly” to an anti-involution
σ̄C on AC:

σ̄C(x + iy) := σ(x) − σ(y)i .

We embed AC into Mat2(A) in the following way:

ϒ : AC → Mat2(A)

x + yi �→
(

x y
−y x

)
.

(2.1)

This map is an injective homomorphism of K-algebras. Moreover, the anti-involution
σ̄ corresponds to σ T under this embedding. From Corollary 2.18 we obtain:

Corollary 2.79 Let (A, σ ) be a Hermitian algebra. The algebra (AC, σ̄C) is Hermitian
if and only if A is semisimple. If A is semisimple then AC is semisimple.

Proof If (A, σ ) is Hermitian and semisimple, then (AC, σ ) is Hermitian and semisim-
ple by 2.60.

If A is not semisimple, i.e. the Jacobson radical J (A) of A is not trivial, then byA.9,
for every 0 �= x ∈ J (A), x2 = 0 and σ(x) = −x . Therefore, σ̄C(i x) = i x �= 0,
i.e. i x ∈ Aσ̄C

C
and (i x)2 = 0. This contradicts to the property to be Hermitian for

(AC, σ̄C).
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Corollary 2.80 Let (A, σ ) be Hermitian and semisimple.

• The group U(AC,σ̄C) = {z ∈ AC | σ̄C(z)z = 1} is semi-algebraically connected
(as a semi-algebraic deformation retract of a semi-algebraically connected space
A×
C
).

• If K = R, then the group U(AC,σ̄C) is a maximal compact subgroup of A×
C
.

Remark 2.81 There is another anti-involution on AC, namely the complex linear exten-
sion σC of σ . Together with this anti-involution AC is never Hermitian because

0 = 1 − 1 = σC(1) · 1 + σC(i) · i .

Similarly to spectral theorems for σ -symmetric elements of a semisimple, Hermi-
tian algebra (A, σ ), the spectral theorem for σ̄C-normal elements of (AC, σ̄C) can be
proven.

Theorem 2.82 (Spectral theorem for normal elements, first version) Let (AC, σ̄C) be
Hermitian. For every σ̄C-normal element b ∈ AC, there exist a unique k ∈ N, unique
elements λ1, . . . , λk ∈ KC, all distinct, and a unique complete system of orthogonal
idempotents c1, . . . , ck ∈ KC[b] ∩ Aσ̄C

C
such that

b =
k∑

i=1

λi ci .

We call this the spectral decomposition of b.

Theorem 2.83 (Spectral theorem for normal elements, second version) Let (AC, σ̄C)

be Hermitian. Suppose that the Jordan algebra Aσ̄C
C

has rank n. For every σ̄C-normal

element b ∈ AC there exist a Jordan frame (e1, . . . , en) of Aσ̄C
C

and an n-tuple of
elements (λ1(b), . . . , λn(b)) ∈ K

n
C
such that

b =
n∑

i=1

λi (b)ei .

The tuple (λ1(b), . . . , λn(b)) is uniquely defined by b up to permutations. The elements
λ1(b), . . . , λn(b) ∈ K (with their multiplicities) are called the eigenvalues of b. In
particular, they do not depend on the Jordan frame e1, . . . , en ∈ Aσ̄C

C
.

Remark 2.84 A Jordan frame e1, . . . , en ∈ Aσ̄C
C

associated to a σ̄C-normal element
b ∈ AC by Theorem 2.83 is in general not unique and elements e1, . . . , en /∈ KC[b],
in contrast to the complete system of orthogonal idempotents from Theorem 2.82.

Corollary 2.85 Let (A, σ ) be semisimple and Hermitian. Let a1, a2 ∈ Aσ that com-
mute. Then there exist a complete orthogonal system of idempotents c1, . . . ck ∈ Aσ
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and elements λ1, . . . , λk, μ1, . . . , μk ∈ K such that

a1 =
k∑

i=1

λi ci , a2 =
k∑

i=1

μi ci .

Moreover, there exist an a ∈ Aσ such that c1, . . . , ck ∈ K[a]. In particular, a1, a2 ∈
K[a].
Corollary 2.86 If a ∈ AC is σ̄C-normal, then σ(a) ∈ K[a].
Corollary 2.87 Let (AC, σ̄C) be Hermitian. If a ∈ A−σ̄C , then all the eigenvalues of a
are purely imagine. If a ∈ U(AC,σ̄C), then all the eigenvalues are in S1

K
= {z ∈ KC |

|z| = 1}.
Corollary 2.88 (Spectral theorem forU(A,σ )) For every u ∈ U(A,σ ), there exist unique
r ∈ N ∪ {0}, s ∈ {0, 1, 2} with r + s > 0, unique systems of idempotents c1, . . . , cr ∈
Aσ̄C
C

and c′
1, . . . , c

′
s ∈ Aσ such that c1, . . . , cr , c̄1, . . . , c̄r , c′

1, . . . , c
′
s is a complete

orthogonal system of idempotents of Aσ̄C
C

and unique elements ζ1, . . . , ζr ∈ S1
K
with

Im(ζi ) > 0 for all i ∈ {1, . . . , r} all distinct and ε1, . . . εs ∈ {1,−1} all distinct such
that

u =
r∑
j=1

(ζ j c j + ζ̄ j c̄ j ) +
s∑

j=1

ε j c
′
j .

Proof For an element u ∈ U(AC,σ̄C), u ∈ U(A,σ ) if and only if u = ū. We take the
spectral decompositions of u and ū:

u =
k∑
j=1

ζ j c j , ū =
k∑
j=1

ζ̄ j c̄ j

where all ζ j ∈ S1, (c j ) is a complete orthogonal system of idempotents of Aσ̄C
C
.

Notice, all c̄1, . . . , c̄k is a complete orthogonal system of idempotents of Aσ̄C
C

because
c̄i c̄ j = ci c j . If u = ū, then, because of uniqueness of the spectral decomposition, for
every j ∈ {1, . . . , k} there exists j ′ ∈ {1, . . . , k} such that ζ j c j = ζ̄ j ′ c̄ j ′ . There can
be two cases:

(1) j = j ′ then ζ j ∈ R i.e. ζ j ∈ {1,−1}.
(2) j �= j ′ then c j ′ = c̄ j and ζ j /∈ R, i.e. Im(ζ j ) �= 0.

Because all ζ j are distinct, there can be at most one j such that ζ j = 1 and at most
one j with ζ j = −1. For such j , c j ∈ Aσ . So we obtain

u =
r∑
j=1

(ζ j c j + ζ̄ j c̄ j ) +
s∑

j=1

ε j c
′
j .
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for appropriate r , s ∈ N ∪ {0}, s ≤ 2. Finally, we can rename the idempotents so that
Im(ζ j ) > 0 for all j ∈ {1, . . . r}.
Definition 2.89 The determinant map on U(AC,σ̄C) is given by:

det(u) =
n∏
j=1

ζ j ∈ S1
K

⊂ KC

where u = ∑n
j=1 ζ j e j for some Jordan frame e1, . . . , en ∈ Aσ̄C

C
.

Proposition 2.90 Let K = R. The fundamental group of U(AC,σ̄C) contains a copy of
(Z,+).

Proof The determinant map

det : U(AC,σ̄C) → S1

is continuous and surjective. It induces the homomorphism of fundamental groups:

(det)∗ : π1(U(AC,σ̄C), 1) → π1(S
1, 1).

This homomorphism is surjective because the curve u(t) = eit e1 + ∑n
j=2 e j for

t ∈ [0, 2π ] for some Jordan frame e1, . . . , en maps to the curve det∗ u(t) = eit which
generates π1(S1, 1). Therefore u(t) generates in π1(U(AC,σ̄C), 1) a subgroup that is
isomorphic to (Z,+).

Theorem 2.91 Let (A, σ ) be a semisimple Hermitian algebra and (AC, σC) be its
complexification. Assume that the Jordan algebra Aσ̄C

C
is simple. The following action

of A×
C
on (AσC

C
)×

ψC : A×
C

× (AσC
C

)× → (AσC
C

)×
(a, b) �→ σ(a)ba

is transitive.

Proof We will show that for every b ∈ (AσC
C

)× there exists an a ∈ A×
C

such that
ψC(a, 1) = b. We take b ∈ (AσC

C
)× and consider its polar decomposition of b = ub′

where u ∈ U(AC,σ̄C), b′ ∈ (Aσ̄C
C

)×. Using the spectral theorem we obtain: b′ =∑k
i=1 λi ci where (ci )ki=1 is a Jordan frame of Aσ̄C

C
and λi > 0 for all i ∈ {1, . . . , k}.

We fix a Jordan frame (xi )ki=1 of A
σ . This is also a Jordan frame of Aσ̄C

C
. By 2.76,

the group U(AC,σ̄C) acts transitively on Jordan frames of Aσ̄C
C
. Therefore, there exists

u′ ∈ U(AC,σ̄C) such that xi = σ̄ (u′)ciu′ for all i ∈ {1, . . . , k}. Further

σC(u′)bu′ = σC(u′)uσ̄C(u′)−1σ̄C(u′)b′u′ = σC(u′)uσ̄C(u′)−1
k∑

i=1

λi xi =: u′′b′′
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where u′′ = σC(u′)uσ̄C(u′)−1 ∈ U(AC,σ̄C), b′′ = ∑k
i=1 λi xi ∈ Aσ . Since u′′b′′ =

σ(u′)bu′ ∈ AσC
C
,

u′′b′′ = σC(u′′b′′) = b′′σC(u′′) = b′′(ū′′)−1.

Therefore, b′′ = u′′b′′ū′′. By induction, we obtain b′′ = (u′′)nb′′(ū′′)n for all n ∈ Z,
or equivalently (u′′)nb′′ = b′′(ū′′)−n .

Now assume K = R. Since (u′′)nb′′ = b′′(ū′′)−n holds for every n ∈ Z, the
following equality f (u′′)b′′ = b′′ f ((ū′′)−1) holds for every function f that can be
expressed as a convergent Taylor series at u′′. Since u′′ ∈ U(AC,σ̄C), u′′ �= 0. By 2.87,
there exists w ∈ U(AC,σ̄C) such that (u′′) = w2. So we can take as f the branch of the
square root such that f (u′′) = w. Then we obtain wb′′ = b′′(w̄)−1. Since any branch
of the square root is a semi-algebraic function, using the Tarski–Seidenberg transfer
principle (see [7, Proposition 5.2.3]), this holds for every real closed field K.

This implies:

u′′b′′ = wb′′w̄−1 = (wb
1
2 )b

1
2 w̄−1 = σC(b

1
2 w̄−1)b

1
2 w̄−1 = ψC(b

1
2 w̄−1, 1).

Finally, b = σC((u′)−1)u′′b′′(u′)−1 = ψC(b
1
2 w̄−1(u′)−1, 1).

2.9 Quaternionic extensions of algebras

If A is an algebra over a real closed field K, then we call AH = A ⊗K KH the
quaternionification of A.

Sometimes, to make a construction more precise, we will write KH{i, j, k} to
emphasize the imaginary units. The multiplication rule is then i j = − j i = k. Some-
times, we will also writeKC{κ} to emphasize the imaginary unit κ of the complexified
field KC.

If AC = A ⊗K KC is the complexification of some real algebra A, then it can be
embedded into A ⊗K KH in many different ways. If we write AC := A ⊗K KC{i},
AH := A⊗K KH{i, J , K }, it means that AC is embedded into AH by the map induced
by the identification AC � i �→ i ∈ AH.

Let A be a KC-algebra, A0 ⊂ A be K-subalgebra of A with the property that there
is a central element I ∈ Z(A) such that I 2 = −1 and A = A0 ⊕ A0 I . Then we say
that A0 is a real locus of A with respect to the imaginary unit I . In this case, A is
isomorphic to A0 ⊗K KC{I } as KC{I }-algebra. We take the following KH-algebra:

H[A, A0, I , J ] := A0 ⊗K KH{I , J , K }.

The algebra A sits inside H[A, A0, I , J ] as described above.

Definition 2.92 We call H[A, A0, I , J ] the quaternionification of A with respect to
the real locus A0 and the imaginary unit I .
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The algebra AH can be embedded into Mat2(AC) in the following way:

ϒH : AH → Mat2(AC)

x + y j �→
(

x y
−ȳ x̄

)
.

(2.2)

This map is an injective homomorphism of C{i}-algebras. Moreover, the anti-
involution σ1 on AH defined as follows:

σ1(x + y j) = σ̄C(x) − σC(y) j

for x, y ∈ AC, corresponds under this embedding to σ̄ T . By Corollary 2.18, we obtain:

Corollary 2.93 Let (A, σ ) be Hermitian and semisimple.

• The algebra (AH, σ1) is Hermitian and semisimple.
• IfK = R, then the groupU(AH,σ1) = {z ∈ AC | σ1(z)z = 1} is a maximal compact
subgroup of A×

H
.

Remark 2.94 There is another anti-involution σ0 on AH defined as follows:

σ0(x + y j) = σC(x) + σ̄C(y) j

for x, y ∈ AC. The algebra (AH, σ0) is never Hermitian.

2.10 Some properties of real Hermitian algebras

In this section, we assume that (A, σ ) is a semisimple real Hermitian algebra. We will
state some properties that depend on the fact that R is locally compact, contrary to the
other real closed fields.

Proposition 2.95 The group U(A,σ ) is a maximal compact subgroup of A×.
Proof The group U(A,σ ) ⊂ Isom(β) is compact by 2.71. By 2.68, U(A,σ ) is a defor-
mation retract of A×. Hence, it is a maximal compact subgroup of A×.
Corollary 2.96 Un(A, σ ) is a maximal compact subgroup of Mat×n (A).

Corollary 2.97 (Polar decomposition, second version) The following map:

pol : U(A,σ ) × Aσ≥0 → A
(u, b) �→ ub.

is proper, surjective.

Proof Since the group U(A,σ ) is compact, we can take a closure in the polar decom-
position and the map stays surjective. Let K ⊂ A be a compact subset, then

pol
−1

(K ) ⊆ U(A,σ ) × {(σ (a)a)
1
2 | a ∈ K }

is compact.
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Proposition 2.98 If A is Hermitian, the map θ : A → Aσ≥0 is proper.

Proof Let K ⊂ Aσ≥0 be a compact subset. Then

θ−1(K ) = {ub
1
2+ | u ∈ U(A,σ ), b+ ∈ K } = pol(U(A,σ ) × K ).

Since U(A,σ ) × K is compact in U(A,σ ) × Aσ≥0 and pol is continuous, θ−1(K ) is
compact.

Proposition 2.99 Let (A, σ ) be Hermitian. The domain

D(A, σ ) := {a ∈ A | 1 − σ(a)a ∈ Aσ≥0}

is compact.
In particular, for every vector subspace V of A, the domain

D(V , σ ) := {a ∈ V | 1 − σ(a)a ∈ Aσ≥0} = D ∩ V

is compact.

Proof This follows directly from 2.71.

3 Symplectic groups over noncommutative algebras

In this section we introduce symplectic groups over a unital algebra with an anti-
involution.

3.1 Sesquilinear forms on A-modules and their groups of symmetries

Let A be a unital associative finite dimensional algebra over a field K with an anti-
involution σ .

Definition 3.1 A σ -sesquilinear form ω on a right A-module V is a map

ω : V × V → A

such that

ω(x + y, z) = ω(x, z) + ω(y, z)

ω(x, y + z) = ω(x, y) + ω(x, z)

ω(x1r1, x2r2) = σ(r1)ω(x1, x2)r2

We denote by

Aut(ω) := { f ∈ Aut(V ) | ∀x, y ∈ V : ω( f (x), f (y)) = ω(x, y)}
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the group of symmetries of ω. We also define the corresponding Lie algebra:

End(ω) := { f ∈ End(V ) | ∀x, y ∈ V : ω( f (x), y) + ω(x, f (y)) = 0}

with the usual Lie bracket [ f , g] = f g − g f .

We now set V = A2. We view V as the set of columns and endow it with the
structure of a right A-module.

Definition 3.2 We make the following definitions:

(1) A pair (x, y) for x, y ∈ A2 is called basis of A2 if for every z ∈ A2 there exist
a, b ∈ A such that z = xa + yb.

(2) The element x ∈ A2 is called regular if there exists y ∈ A2 such that (x, y) is a
basis of A2.

(3) l ⊆ A2 is called a line if l = x A for a regular x ∈ A2. We denote the space of
lines of A2 by P(A2).

(4) Two regular elements x, y ∈ A2 are called linearly independent if (x, y) is a basis
of A2.

(5) Two lines l,m are called transverse if l = x A, m = yA for linearly independent
x, y ∈ A2.

(6) An element x ∈ A2 is called isotropic with respect to ω if ω(x, x) = 0. The set
of all isotropic regular elements of (A2, ω) is denoted by Is(ω).

(7) A line l is called isotropic if l = x A for an regular isotropic x ∈ A2. The set of
all isotropic lines of (A2, ω) is denoted by P(Is(ω)).

Definition 3.3 We consider a form ω and say

(1) The form ω is non-degenerate if for every regular x ∈ A2 there exists a y ∈ A2

such that ω(x, y) ∈ A×.
(2) The form is σ -symmetric if ω(x2, x1) = σ(ω(x1, x2)) for all x1, x2 ∈ A2.
(3) The form is σ -skew-symmetric ifω(x2, x1) = −σ(ω(x1, x2)) for all x1, x2 ∈ A2.
(4) When A is Hermitian, a σ -symmetric form is called σ -inner product if ω(x, x) ∈

Aσ+ for all regular x ∈ A2.

We can now introduce the symplectic group Sp2(A, σ ) over (A, σ ).

Definition 3.4 Let (A, σ ) be a unital ring with anti-involution. Let ω(x, y) :=
σ(x)T�y with � =

(
0 1

−1 0

)
. The form ω is called the standard symplectic form

on A2. The group Sp2(A, σ ) := Aut(ω) is the symplectic group Sp2 over (A, σ ). Its
Lie algebra is sp2(A, σ ) := End(ω).

We have

Sp2(A, σ ) =
{(

a b
c d

) ∣∣∣∣ σ(a)c, σ (b)d ∈ Aσ , σ (a)d − σ(c)b = 1

}
⊆ Mat×2 (A)

sp2(A, σ ) =
{(

x z
y −σ(x)

) ∣∣∣∣ x ∈ A, y, z ∈ Aσ

}
⊆ Mat2(A).

From now on, we assume ω(x, y) := σ(x)T�y on A2.
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Definition 3.5 A basis (x, y) of A2 is called symplectic if x, y are isotropic and
ω(x, y) = 1.

Proposition 3.6 For every basis (x, y) of A2 and for every z ∈ A2 there exist unique
a, b ∈ A such that z = xa + yb. Moreover, for every regular x ∈ A2, the map

A → x A
a �→ xa

is an isomorphism of right A-modules.

Proof Take a basis (x, y) of A2. Consider the following A-homomorphism of right
A-modules:

A2 → A2

(a, b) �→ z = xa + yb.

This is also a surjective homomorphism of K-vector spaces of the same dimension.
Therefore, it is injective, i.e. (a, b) is uniquely defined by z. The restriction of this
homomorphism to A × {0} is an isomorphism A → x A of right A-modules.

Proposition 3.7 The form ω is non-degenerate.

Proof Let x = (x1, x2)T ∈ A2 regular. We want to find y ∈ A2 such thatω(y, x) = 1.
Since x is regular, there exists x ′ = (x ′

1, x
′
2)

T ∈ A2 such that (x, x ′) is a basis. That

means that the matrix X :=
(
x1 x ′

1
x2 x ′

2

)
is invertible, i.e. there exists the inverse matrix

X−1 =
(
a1 a2
a′
1 a′

2

)
. Therefore, a1x1 + a2x2 = 1. We take y := (σ (a2),−σ(a1))T ,

then

ω(y, x) = (a2,−a1)

(
0 1

−1 0

)(
x1
x2

)
= (a1, a2)

(
x1
x2

)
= 1.

So ω is non-degenerate.

Proposition 3.8 An element x = (x1, x2)T ∈ A2 is isotropic if and only if σ(x1)x2 ∈
Aσ .

Proof The proof follows by direct computation.

Proposition 3.9 If x, y ∈ A2 are isotropic and ω(x, y) = 1, then (x, y) is a basis.

Proof Let x, y ∈ A2 are isotropic and ω(x, y) = 1. Consider the map

A2 → A2

(a, b) �→ xa + yb.
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To see that this map is an isomorphism, it is enough to check that it is injective. Assume
xa + yb = 0 for some a, b ∈ A, then

0 = ω(x, xa + yb) = ω(x, y)b = b,

0 = ω(y, xa + yb) = −ω(x, y)a = −a.

So a = b = 0.

Corollary 3.10

Sp2(A, σ ) =
{(

a b
c d

) ∣∣∣∣
((

a
c

)
,

(
b
d

))
is a symplectic basis

}

Proposition 3.11 Let x ∈ A2 regular isotropic, y ∈ A2 and ω(x, y) ∈ A×. Then
(x, y) is a basis of A2. In particular, y is regular.

Proof To see that (x, y) is a basis, it is enough to check that the map

A2 → A2

(a, b) �→ xa + yb

is injective. Assume xa + yb = 0 for some a, b ∈ A, then

0 = ω(x, xa + yb) = ω(x, y)b.

Since ω(x, y) ∈ A×, b = 0.
The element x ∈ A2 is regular, therefore, by Proposition 3.6, if xa = 0, then a = 0.

So, we obtain (a, b) = (0, 0), i.e. the map above is an isomorphism.

Proposition 3.12 For every regular isotropic x ∈ A2, there exists an isotropic y ∈ A2

such that (x, y) is a symplectic basis.

Proof Since ω is non-degenerate, there exists y′ ∈ A2 such that ω(x, y′) ∈ A× and
(x, y′) is a basis. We take y′′ := y′ − x

2ω(y′, x)−1ω(y, y), then

ω(y′′, y′′) = ω(y′, y′) − 1

2
ω(y′, x)ω(y′, x)−1ω(y′, y′)

−1

2
σ(ω(y′, x)−1ω(y′, y′))ω(x, y′) = 0.

Since ω(x, y′) = ω(x, y′′), if we take y := y′′ω(x, y′)−1, we obtain ω(x, y) = 1 and
x, y are isotropic, so (x, y) is a symplectic basis.

Corollary 3.13 The group Sp2(A, σ ) acts transitively on regular isotropic elements of
(A2, ω).
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Proof If x = (x1, x2)T ∈ A2 is regular isotropic, then there exists y = (y1, y2)T ∈ A2

regular isotropic such that (x, y) is a symplectic basis. Then

g :=
(
x1 y1
x2 y2

)
∈ Sp2(A, σ )

and g(1, 0)T = x .

Let now K be a real closed field and (A, σ ) be a Hermitian K-algebra. We consider
the following sesquilinear form b : A2 × A2 → A, b(x, y) := σ(x)T y for x, y ∈ A2.

Proposition 3.14 b(x, x) = 0 for an element x ∈ A2 if and only if x = 0.

Proof For x=(x1, x2)T ∈ A2, b(x, x) = σ(x1)x1+σ(x2)x2 with σ(x1)x1, σ (x2)x2 ∈
Aσ≥0. If b(x, x) = 0, then σ(x1)x1 = σ(x2)x2 = 0.

Proposition 3.15 If x ∈ A2 is regular then b(x, x) ∈ Aσ+.

Proof Let x = (x1, x2)T and assume b(x, x) = σ(x)x = σ(x1)x1 + σ(x2)x2 ∈
Aσ≥0 is not invertible. By the Lemma 2.27, there exists c ∈ R[a] ⊆ Aσ such that
0 = cb(x, x)c = b(xc, xc). Therefore, xc = 0 and so by Proposition 3.6, the map
A → x A, a �→ xa is not invertible. In particular, x is not regular.

Proposition 3.16 (Gram-Schmidt orthogonalization) Let x ∈ A2 be regular, then there
exists a ∈ A and y ∈ A2 such that (xa, y) is an orthonormal with respect to b basis
of A2, i.e. b(xa, xa) = b(y, y) = 1, b(xa, y) = 0.

Proof Since x is regular, b(x, x) ∈ Aσ+. Take a = b(x, x)− 1
2 , then b(xa, xa) = 1.

Moreover, there exists z ∈ A2 such that (x, z) is a basis of A2. Consider y′ :=
z − xab(xa, z), obviously (xa, y′) is a basis as well. Then b(xa, y′) = b(xa, z −
xab(xa, z)) = b(xa, z)−b(xa, xa)b(xa, z) = 0. Since y′ is regular and sob(y′, y′) ∈
Aσ+, we can take y := y′b(y′, y′)−1.

3.2 Maximal compact subgroup of Sp2(A, �) over Hermitian algebras

We now assume K = R and (A, σ ) to be Hermitian, semisimple R-algebra. We
describe a maximal compact subgroup of Sp2(A, σ ).

Definition 3.17 We denote:

U2(A, σ ) := {M ∈ Mat2(A) | σ(M)T M = Id};
KSp2(A, σ ) := Sp2(A, σ ) ∩ U2(A, σ ).

Proposition 3.18 KSp2(A, σ ) =
{(

a b
−b a

) ∣∣∣∣ σ(a)a + σ(b)b = 1
σ(a)b − σ(b)a = 0

, a, b ∈ A

}
.
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Proof Take M :=
(
a b
c d

)
∈ KSp2(A, σ ). On one hand, M ∈ Sp2(A, σ ), therefore,

M−1 = −
(

0 1
−1 0

)
σ(M)T

(
0 1

−1 0

)
=
(

σ(d) −σ(b)
−σ(c) σ (a)

)
.

On the other hand, M ∈ U2(A, σ ), therefore,

M−1 = σ(M)T =
(

σ(a) σ (c)
σ (b) σ (d)

)
.

So we obtain, a = d and b = −c.

Theorem 3.19 The group KSp2(A, σ ) is a maximal compact subgroup of Sp2(A, σ ).

Proof The group KSp2(A, σ ) is a closed subgroup of the compact group U2(A, σ ),
so it is compact.

Now, we show that KSp2(A, σ ) is a maximal compact subgroup of Sp2(A, σ ). For
this let K be a compact subgroup containing KSp2(A, σ ) as a proper subgroup. We
consider the following decomposition of sp2(A, σ ):

sp2(A, σ ) = ksp2(A, σ ) ⊕ S

where

ksp2(A, σ ) = Lie(KSp2(A, σ )) =
{(

a b
−b a

) ∣∣∣∣ σ(a) = −a ∈ A, b ∈ Aσ

}
,

S =
{(

c d
d −c

) ∣∣∣∣ c, d ∈ Aσ

}
.

By our assumption, Lie(K ) contains ksp2(A, σ ) and has nontrivial intersection with
S. Take some matrix

(
c d
d −c

)
∈ Lie(K ) ∩ S, c, d ∈ Aσ .

The matrix

(
0 d

−d 0

)
∈ ksp2(A, σ ) ⊂ Lie(K ),

therefore,

(
c 2d
0 −c

)
=
(
c d
d −c

)
+
(

0 d
−d 0

)
∈ Lie(K ) \ ksp2(A, σ ).
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Using the exponential map of sp2(A, σ ) restricted to Lie(K ), we obtain that there

exits a matrix M :=
(
g gx
0 g−1

)
∈ K \KSp2(A, σ )where g = exp(c) ∈ Aσ , x ∈ Aσ .

We consider the spectral decomposition of g = ∑k
i=1 λi ci with λi > 0 and (ci )ki=1 a

complete orthogonal system of idempotents. Take a sequence {Mr } ⊆ K . Then

Mr
11 = gk =

k∑
i=1

λri ci , Mr
22 = g−k =

k∑
i=1

λ−r
i ci .

Assume that there exists s ∈ {1, . . . , k} such that λs �= ±1. Then either 0 < |λs | < 1
or 0 < |λ−1

s | < 1. Without loss of generality, we may assume 0 < |λs | < 1. Since K
is compact, {Mr } ⊆ K has a convergent subsequence {Mr j } ⊆ K :

lim M
r j
11 = lim

k∑
i=1

λ
r j
i ci =

k∑
i=1

λ̂i ci

where λ̂i = lim λ
r j
i . But λ̂s = lim λ

r j
s = 0 for any subsequence {r j }. Therefore

lim M
r j
11 is not invertible and so lim Mr j is not invertible as well. Therefore, all

λi = ±1 and g2 = 1. The element L :=
(
g 0
0 g−1

)
∈ KSp2(A, σ ) ⊂ K . Then

ML =
(
1 x
0 1

)
∈ K . Take (ML)r =

(
1 r x
0 1

)
∈ K . This sequence does not have any

convergent subsequence unless x = 0. So we get M = L ∈ KSp2(A, σ ). This contra-
dicts the assumption M /∈ KSp2(A, σ ) and we obtain that KSp2(A, σ ) is a maximal
compact subgroup of Sp2(A, σ ).

Corollary 3.20 The embedding

ϒ : AC → Mat2(A)

(see Eq. 2.1) maps U(AC,σ̄C) isomorphically to KSp2(A, σ ). In particular, the funda-
mental group of Sp2(A, σ ) is infinite.

3.3 Maximal compact subgroups of Sp2(AC, �C) over complexified algebras

Let K = R and (A, σ ) be a Hermitian, semisimple R-algebra. In Sect. 2.8 we have
seen that (AC, σ̄C) is also Hermitian and semisimple and (AC, σC) is never Hermitian.

Definition 3.21 We set

KSpc2(AC, σC) := Sp2(AC, σC) ∩ U2(AC, σ̄C).
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Proposition 3.22 The group KSpc2(AC, σC) is given by

KSpc2(AC, σC) =
{(

a b
−b̄ ā

) ∣∣∣∣ σ̄C(a)a + σC(b)b̄ = 1
σ̄C(a)b − σC(b)ā = 0

, a, b ∈ AC

}
.

Proof Take M :=
(
a b
c d

)
∈ KSpc2(AC, σC). On one hand, M ∈ Sp2(AC, σC),

therefore,

M−1 = −
(

0 1
−1 0

)
σC(M)T

(
0 1

−1 0

)
=
(

σC(d) −σC(b)
−σC(c) σC(a)

)
.

On the other hand, M ∈ U2(AC, σ̄C), therefore,

M−1 = σ̄ (M)T
C

=
(

σ̄C(a) σ̄C(c)
σ̄C(b) σ̄C(d)

)
.

So we obtain, d = ā and c = −b̄.

Theorem 3.23 The group KSpc2(AC, σC) is a maximal compact subgroup of
Sp2(AC, σC).

Proof The proof follows the same strategy as the proof of Theorem 3.19.
By definition, KSpc2(AC, σC) is closed subgroup of U2(AC, σ̄C) which is compact,

so KSpc2(AC, σC) is compact as well.
To show that KSpc2(AC, σC) is a maximal compact subgroup of Sp2(AC, σC), we

assume K to be a compact subgroup of Sp2(AC, σC) containing KSpc2(AC, σC) as a
proper subgroup. We consider the following decomposition of sp2(AC, σC):

sp2(AC, σC) = kspc2(AC, σC) ⊕ S

where

kspc2(AC, σC) = Lie(KSpc2(AC, σC)) =
{(

a b
−b̄ ā

) ∣∣∣∣ σ̄C(a) = −a ∈ AC, b ∈ Aσ̄
C

}
,

S =
{(

c d
d̄ −c̄

) ∣∣∣∣ c, d ∈ Aσ̄
C

}
.

By our assumption, Lie(K ) contains kspc2(AC, σC) and has nontrivial intersectionwith
S. So we can take a matrix

(
c d
d̄ −c̄

)
∈ Lie(K ) ∩ S, c, d ∈ Aσ̄

C
.

Then
(

0 d
−d̄ 0

)
∈ kspc2(AC, σC) ⊂ Lie(K ),
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therefore,

(
c 2d
0 −c̄

)
=
(
c d
d̄ −c̄

)
+
(

0 d
−d̄ 0

)
∈ Lie(K ) \ kspc2(AC, σC).

Using the exponential map of sp2(AC, σC) restricted to Lie(K ), we obtain that there

exits a matrix M :=
(
g gx
0 ḡ−1

)
∈ K \ KSpc2(AC, σC) where g = exp(c) ∈ Aσ̄

C
,

x ∈ Aσ̄
C
. We now consider the spectral decomposition of g = ∑k

i=1 λi ci with λi > 0
and (ci )ki=1 a complete orthogonal system of idempotents. Take a sequence {Mr } ⊆ K .
Then

Mr
11 = gk =

k∑
i=1

λri ci , Mr
22 = ḡ−k =

k∑
i=1

λ−r
i ci .

We assume, there exists s ∈ {1, . . . , k} such that λs �= ±1. Then either 0 < |λs | < 1
or 0 < |λ−1

s | < 1. Without loss of generality, we assume 0 < |λs | < 1. Since K is
compact, {Mr } ⊆ K has a convergent subsequence {Mr j } ⊆ K :

lim M
r j
11 = lim

k∑
i=1

λ
r j
i ci =

k∑
i=1

λ̂i ci

where λ̂i = lim λ
r j
i . But λ̂s = lim λ

r j
s = 0 for any subsequence {r j }. Therefore

lim M
r j
11 is not invertible and so lim Mr j is not invertible aswell. Therefore, allλi = ±1

and g2 = 1. The element L :=
(
g 0
0 g−1

)
∈ KSpc2(AC, σC) ⊂ K . Then ML =(

1 x
0 1

)
∈ K . Take (ML)r =

(
1 r x
0 1

)
∈ K . This sequence does not have any

convergent subsequence unless x = 0. So we get M = L ∈ KSpc2(AC, σC). This
contradicts the assumption M /∈ KSpc2(AC, σC) and we obtain that KSpc2(AC, σC) is
a maximal compact subgroup of Sp2(AC, σC).

Corollary 3.24 Let (A, σ ) be a real Hermitian algebra, AC be the complexification of
A, and σC be the complex linear extension of σ . The embedding

ϒH : AH → Mat2(AC)

from 2.2 maps U(AH,σ1) isomorphically to KSp
c
2(AC, σC).

Remark 3.25 Notice, that the group KSp2(AC, σC) is never compact because it is a
complexification of the real group KSp2(A, σ ).



82 Page 44 of 119 D. Alessandrini et al.

3.4 Realization of classical Lie groups as Sp2(A, �)

In the case when (A, σ ) is a Hermitian algebra so that (Aσ , ◦) is a Jordan algebra,
the symplectic groups Sp2(A, σ ) are isomorphic to classical Hermitian Lie groups of
tube type. There are also other groups that can be realized as Sp2(A, σ ) for algebras
with anti-involution which are not Hermitian.

(1) Real symplectic group Sp(2n, R).
In order to realize the real symplectic group Sp(2n, R), we take A = Mat(n, R)

to the be algebra of n×n matrices over R and consider the involution σ : A → A
given by σ(r) = rT , r ∈ A.
Then Sp2(A, σ ) is isomorphic to Sp(2n, R). The maximal compact subgroup is

KSp2(A, σ ) = ϒ(U(n)) ∼= U(n).

(2) Indefinite unitary group U(n, n).
To realize the unitary group U(n, n) of an indefinite Hermitian form of sig-
nature (n, n) we consider A = Mat(n, C), and the involution σ̄ : A → A
given by σ̄ (r) = r̄ T . Then Sp2(A, σ̄ ) is isomorphic to U(n, n). To see this, we
notice that the standard Hermitian form h of signature (n, n) on C

2n is given by
h(x, y) := iω(xT , yT ) where T = diag(Idn,−i Idn)). The complexification AC

is isomorphic to Mat(n, C) × Mat(n, C) (see Sect. B.1.1). Therefore,

KSp2(A, σ ) ∼= U(n) × U(n).

Note that we cannot realize the special unitary group SU(n, n) as Sp2(A, σ ).
(3) The group SO∗(4n).

By definition, the group SO∗(2n) for n ∈ N (some authors also use the notation
O(n, H)) is the group of isometries of the following form on the quaternionic right
module H

n :

β(x, y) =
n∑

i=1

x̄i j yi

where x = (x1, . . . , xn), y = (y1, . . . yn) ∈ H
n and ·̄ : H → H is the quaternionic

conjugation. The group SO∗(2n) is a real form of the complex group SO(2n, C).
The groups SO∗(2n) are Hermitian Lie groups, but they are of tube type only if
n is even. In order to realize SO∗(4n) as Sp2(A, σ ) we consider A = Mat(n, H)

and the involution σ1 : A → A, given by σ1(r) = r̄ T = σ̄ (r1) − σ(r2) j for
r = r1 + r2 j and r1, r2 ∈ Mat(n, C). Then Sp2(A, σ1) is isomorphic SO∗(4n)

considered as the group of isometries of the quaternionic form β on H
2n defined

by

β(x, y) =
2n∑
i=1

x̄i j yi = x̄ T (Id2n j)y.
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To see this, we notice that

Id2n j = σ1(T )

(
0 Idn

− Idn 0

)
T

for

T = 1√
2

(
Idn − Idn j

− Idn j Idn

)
.

In this case AC is isomorphic to Mat(2n, C) (see Sect. B.1.2). Therefore.

KSp2(A, σ ) ∼= U(2n).

Remark 3.26 The Hermitian Lie group of tube type SO0(2, n) cannot be realized in
the same way as Sp2(A, σ ). The reason is that the Jordan algebra Bn (see the clas-
sification 2.55) cannot be seen as Aσ for an appropriate Hermitian algebra (A, σ ).
Nevertheless, since Bn can be seen as Jordan subalgebra of an appropriate Clifford
algebra, the group SO0(2, n) (or more precisely, its double cover Spin0(2, n)) can be
realized as Sp2 over some more complicated object which we do not discuss in this
paper.

Remark 3.27 The exceptional Hermitian Lie group of tube type E7 cannot be realized
as Sp2(A, σ ). The reason is that the Jordan algebra Herm(3, O) (see the classifica-
tion 2.55) cannot be embedded into any associative algebra, in particular it cannot be
realized as Aσ for a Hermitian algebra (A, σ ).

Some other Lie groups can also be realized as Sp2(A, σ ) for algebras with anti-
involution (A, σ ) that is not Hermitian.

3.4.1 Other examples

There are other interesting cases of classical groups that can be realized as Sp2(A, σ )

where (A, σ ) is not Hermitian.

(1) To realize the symplectic group over any field K we consider A = Mat(n, K)

with the anti-involution σ(r) := rT . Then Sp2(A, σ ) is isomorphic to Sp(2n, K).
If K = C, A is the complexification of Mat(n, R), and the maximal compact
subgroup is

KSpc2(A, σ ) ∼= Sp(n).

(2) The indefinite symplectic group can be realized as Sp2(A, σ ). For this consider
A = Mat(n, H) with involution σ0(r) = σ(r1) + σ̄ (r2) j for r = r1 + r2 j and
r1, r2 ∈ Mat(n, C). Note that the algebra (A, σ0) is not Hermitian and also does
not appear as a complexification of a Hermitian algebra.
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Then Sp2(A, σ0) is isomorphic Sp(n, n) considered as the group of isometries of
the quaternionic form ω on H

2n given by

ω(x, y) =
2n∑
i=1

x̄i yi = x̄ T
(− Idn 0

0 Idn

)
y

= k

(
σ0(x)

(
Idn k 0
0 − Idn k

)
y

)
.

To see this, we notice that

(
Idn k 0
0 − Idn k

)
= σ0(T )

(
0 Idn

− Idn 0

)
T

for

T = 1√
2

(
Idn Idn k
Idn k Idn

)
.

The maximal compact subgroup of Sp(n, n) is Sp(n) × Sp(n). One can see this
using the machinery developed in the Sect. 5.3.
The subgroupKSp2(A, σ0) is isomorphic toGLn(H)which is not compact because
(A, σ0) is not Hermitian.

4 Space of isotropic lines

We assume (A, σ ) to be a unital ring with an anti-involution. We denote by P(A2) the
space of lines in A2, i.e.

P(A2) := {x A | x ∈ A2 regular}.

The group Mat×2 (A) acts on P(A2).
If A2 is equipped with the standard symplectic form ω, we denote by P(Is(ω)) the

space of all isotropic (with respect to ω) lines:

P(Is(ω)) = {x A ⊂ A2 | ω(x, x) = 0, x regular}.

This space is a closed subspace of P(A2). The group Sp2(A, σ ) acts on the space of
isotropic lines.

4.1 Space of lines as a homogeneous space

Now assume K to be real closed field and (A, σ ) is an algebra with an anti-involution
over K. We show that P(A2) and P(Is(ω)) can be seen as homogeneous (even sym-
metric) spaces that is compact in case K = R.



Symplectic groups over noncommutative algebras Page 47 of 119 82

Proposition 4.1 Let (A, σ ) be Hermitian. The group U2(A, σ ) acts continuously and
transitively on P(A2) with

StabU2(A,σ )

(
1
0

)
A =

{(
u1 0
0 u2

) ∣∣∣∣ u1, u2 ∈ U(A,σ )

}
∼= U(A,σ ) ×U(A,σ ).

Proof Let x A be a line. Since x ∈ A2 is regular, by Proposition 3.15, we can assume
b(x, x) := σ(x)T x = 1. By Proposition 3.16, there exists y such that (x, y) is an
orthonormal basis, i.e. the matrix

(
x1 y1
x2 y2

)
∈ U2(A, σ ),

where x = (x1, x2)T , y = (y1, y2)T . Moreover

(
x1 y1
x2 y2

)(
1
0

)
= x .

That means U2(A, σ ) acts transitively on P(A2).

Now compute the stabilizer of (1, 0)T A. Take U :=
(
x1 y1
x2 y2

)
∈ U2(A, σ ). Since

U (1, 0) = (a, 0) for some a ∈ A, x2 = 0. Further

Id2 = σ(U )TU =
(

σ(x1) 0
σ(y1) σ (y2)

)(
x1 y1
0 y2

)
=
(

σ(x1)x1 σ(x1)y1
σ(y1)x2 σ(y1)y1 + σ(y2)y2

)
.

Therefore, σ(x1)x1 = 1, i.e. x1 ∈ U(A,σ ). Further, σ(x1)y1 = 0. Since x1 ∈ U(A,σ ),
it is invertible and so y1 = 0. Finally, σ(y1)y1 + σ(y2)y2 = σ(y2)y2 = 1. Therefore,
y2 ∈ U(A,σ ).

Corollary 4.2 The space P(A2) is homeomorphic to the quotient space:

U2(A, σ )/U(A,σ ) ×U(A,σ )

where the group U(A,σ ) ×U(A,σ ) is embedded into U2(A, σ ) diagonally.
In particular, ifK = R,P(A2) is compact andP(Is(ω)) is compact for any sesquilin-

ear form ω : A2 × A2 → A.

Corollary 4.3 For Hermitian algebras and complexifications of Hermitian algebras,
we can describe the space P(Is(ω)) more precisely. Similarly to the Proposition 4.1
and Corollary 4.2, one can prove the following two statements:

(1) Let (A, σ ) be Hermitian and ω be the standard symplectic form on A2. Then
KSp2(A, σ ) acts transitively on P(Is(ω)) with

StabKSp2(A,σ )

(
1
0

)
A =

{(
u 0
0 u

) ∣∣∣∣ u ∈ U(A,σ )

}
∼= U(A,σ ).
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In particular, P(Is(ω)) is homeomorphic to the quotient space:

KSp2(A, σ )/U(A,σ )

where the group U(A,σ ) is embedded into KSp2(A, σ ) in the diagonal way.
(2) Let (AC, σC) be the complexification of a Hermitian algebra (A, σ ) and ω be

the standard symplectic form on A2
C
. Then KSpc2(AC, σC) acts transitively on

P(Is(ω)) with

StabKSpc2(AC,σC)

(
1
0

)
A =

{(
u 0
0 u

) ∣∣∣∣ u ∈ U(AC,σ̄C)

}
∼= U(AC,σ̄C).

In particular, P(Is(ω)) is homeomorphic to the quotient space:

KSpc2(AC, σC)/U(AC,σ̄C)

where the group U(AC,σ̄C) is embedded into KSpc2(AC, σC) in the diagonal way.

Proposition 4.4 Sp2(A, σ ) acts transitively on P(Is(ω)).

StabSp2(A,σ )

((
1
0

)
A

)
:=
{(

x xy
0 σ(x)−1

) ∣∣∣∣ x ∈ A×, y ∈ Aσ

}

StabSp2(A,σ )

((
0
1

)
A

)
:=
{(

x 0
zx σ(x)−1

) ∣∣∣∣ x ∈ A×, z ∈ Aσ

}

Proof Sp2(A, σ ) acts transitively on the space of isotropic lines since it acts transitively
on Is(ω).

We prove only the statement for the first stabilizer. The second one can be proved
analogously.

Since

(
x a
b t

)(
1
0

)
=
(
x
b

)
,

x ∈ A× and b = 0. Furthermore,

σ

((
x a
0 t

))T ( 0 1
−1 0

)(
x a
0 t

)
=
(

0 σ(x)t
−σ(t)x −σ(t)a + σ(a)t

)
=
(

0 1
−1 0

)
,

we obtain t = σ(x)−1, a = xy for y ∈ Aσ .

4.2 Action of Sp2(A, �) on pairs of isotropic lines

Let (A, σ ) be a unital ring with an anti-involution.
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Proposition 4.5 Two elements u, v ∈ Is(ω) are linearly independent if and only if,
up to action of Sp2(A, σ ), u = (1, 0)T , v = (a, b)T with b ∈ A×. Moreover, if
ω(u, v) = 1, then a ∈ Aσ , b = 1.

Proof Sp2(A, σ ) acts transitively on Is(ω), therefore, up to Sp2(A, σ )-action, we can
assume that u = (1, 0)T . Since u and v are linearly independent, b ∈ A×. Ifω(u, v) =
1 = b, then v = (a, 1)T is isotropic, i.e.

ω(v, v) = σ(a) − a = 0

So a ∈ Aσ .

Corollary 4.6 If x, y ∈ Is(ω) linearly independent, then ω(x, y) ∈ A×.

Proposition 4.7 If (x, y) is a symplectic basis then there exists the unique g ∈
Sp2(A, σ ) such that g(1, 0)T = x, g(0, 1)T = y. In particular, Sp2(A, σ ) acts tran-
sitively on symplectic bases.

Proof We can assume, x = (1, 0)T , y = (a, 1)T and a ∈ Aσ . Take g :=
(
1 −a
0 1

)
,

then gx = x , gy = (0, 1)T .

Corollary 4.8 Let x A, yA be two transverse isotropic lines with x, y ∈ Is(ω). Then
there exist M ∈ Sp2(A, σ ) and y′ ∈ Is(ω) such that y′A = yA and Mx = (1, 0)T ,
My′ = (0, 1)T . In particular, ω(x, y′) = 1.

Proposition 4.9 Sp2(A, σ ) acts transitively on pairs of transverse isotropic lines.

StabSp2(A,σ )

((
1
0

)
A,

(
0
1

)
A

)
:=
{(

x 0
0 σ(x)−1

)
| x ∈ A×

}
∼= A×.

Proof. By the Corollary 4.8, every pair of transverse isotropic lines can be mapped to
((1, 0)T A, (0, 1)T A) by an element of Sp2(A, σ ). So Sp2(A, σ ) acts transitively on
pairs of transverse isotropic lines.

By the Proposition 4.4,

StabSp2(A,σ )

((
1
0

)
A,

(
0
1

)
A

)

= StabSp2(A,σ )

((
1
0

)
A

)
∩ StabSp2(A,σ )

((
0
1

)
A

)

=
{(

x 0
0 σ(x)−1

)
| x ∈ A

}
.

4.3 Action of Sp2(A, �) on triples of isotropic lines

Let (A, σ ) be a unital ring with an anti-involution. Let (x1A, x3A, x2A) be a triple
of pairwise transverse isotropic lines where all xi ∈ Is(ω). Because of transversality
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of x1A and x2A, we can assume ω(x1, x2) = 1. Up to action of Sp2(A, σ ), we can
assume x1 = (1, 0)T , x2 = (0, 1)T . We can also normalize x3 so that ω(x1, x3) = 1.
Then x3 = (b, 1)T , b = ω(x3, x2) ∈ (Aσ )×.

Proposition 4.10 Orbits of the action of Sp2(A, σ ) on triples of pairwise transverse
isotropic lines are in 1-1 correspondence with orbits of the following action of A× on
(Aσ )×:

ψ : A× × (Aσ )× �→ (Aσ )×
(a, b) �→ abσ(a).

Proof Let (l1, l3, l2) be a triple pairwise transverse of isotropic lines. Up to Sp2(A, σ )-
action, we can assume li = xi A for x1 = (1, 0)T , x2 = (0, 1)T , x3 = (1, b)T with
b ∈ (Aσ )×. The stabilizer StabSp2(A,σ )((1, 0)T A, (0, 1)T A) ∼= A× acts on x3 in the
following way:

diag(a, σ (a)−1)x3 = (ab, σ (a)−1)T = (abσ(a), 1)T a−1

i.e. diag(a, σ (a)−1)(b, 1)T A = (abσ(a), 1)T A.
So we see that in the orbit of (b, 1)T A are exactly all isotropic lines of the form

(b′, 1)T A where b′ is from the orbit of b under ψ .

Definition 4.11 Let (A, σ ) is a semisimple Hermitian algebra over a real closed field
such that Aσ is a simple Jordan algebra. The Kashiwara-Maslov index of a triple of
pairwise transverse isotropic lines (l1, l3, l2) is a signature of an element b ∈ Aσ such
that up to the action of Sp2(A, σ ), li = xi A, x1 = (1, 0)T , x2 = (0, 1)T , x3 = (b, 1)T .

We call a triple (l1, l3, l2) of isotropic lines positive if its Kashiwara-Maslov index
is (n, 0) where n is the rank of Aσ (or equivalently a corresponding element b is in
Aσ+).

By theSylvester’s lawof inertia 2.77, the actionψ form4.10 preserves the signature.
Therefore, the Kashiwara-Maslov index is well defined for every triple of pairwise
transverse isotropic lines. Moreover, because of 2.65, the positivity of a triple is well
defined for every semisimple Hermitian algebra (not only if Aσ is a simple Jordan
algebra).

The following properties of the Kashiwara-Maslov index are well known (see [18,
Section 1.5], [8, Section 5]):

Proposition 4.12 (1) The Kashiwara-Maslov index μ is alternating and invariant for
the diagonal action of Sp2(A, σ ) on the space of transverse triples of isotropic
lines;

(2) μ takes values {−n,−n + 2, . . . , n} where n is the rank of the Jordan algebra
Aσ ;

(3) μ is a cocycle: for 4-tuple (l1, l2, l3, l4) of pairwise transverse isotropic lines, we
have

μ(l2, l3, l4) − μ(l1, l3, l4) + μ(l1, l2, l4) − μ(l1, l2, l3) = 0.
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Proposition 4.13 If (A, σ ) a semisimple Hermitian algebra over a real closed field,
then Sp2(A, σ ) acts transitively on positive triples of isotropic lines.

The stabilizer of the positive triple

((
1
0

)
A,

(
1
1

)
A,

(
0
1

)
A

)

in Sp2(A, σ ) coincides with the following subgroup:

Û :=
{(

u 0
0 u

) ∣∣∣∣ u ∈ U(A,σ )

}
∼= U(A,σ ).

The stabilizer of every positive triple of isotropic lines is conjugate in Sp2(A, σ ) to
Û .

Proof This follows by a direct computation from 2.65 and 4.10.

Proposition 4.14 If (A, σ ) a semisimple Hermitian algebra over a real closed field
such that Aσ is a simple Jordan algebra of rank n, then Sp2(A, σ ) acts transitively on
triples of isotropic lines with a fixed Kashiwara-Maslov index.

Let p, q ∈ N ∪ {0} with p + q = n. Let (ei )ni=1 be a fixed Jordan frame in Aσ and
op,q := ∑p

i=1 ei −∑q
i=1 ep+i . The stabilizer of the triple

((
1
0

)
A,

(
op,q
1

)
A,

(
0
1

)
A

)

in Sp2(A, σ ) coincides with the following subgroup:

Û (op,q) :=
{(

u 0
0 u

) ∣∣∣∣ σ(u)op,qu = op,q

}
.

Proof This follows by a direct computation from 2.77 and 4.10.

Finally, we consider the complexification (AC, σC) of a Hermitian algebra (A, σ ).
In this case, the action of Sp2(AC, σC) on triples of isotropic AC-lines is transitive if
the Jordan algebra Aσ̄C

C
is simple.

Proposition 4.15 Let (AC, σC) be the complexification of a Hermitian algebra (A, σ )

over a real closed field such that the Jordan algebra Aσ̄C
C

is simple. The group
Sp2(AC, σC) acts transitively on triples of isotropic AC-lines.

The stabilizer of the triple

((
1
0

)
A,

(
1
1

)
A,

(
0
1

)
A

)

in Sp2(AC, σC) coincides with the following subgroup:

ÛC :=
{(

u 0
0 u

) ∣∣∣∣ u ∈ U(AC,σC)

}
∼= U(AC,σC).
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The stabilizer of every positive triple of isotropic lines is conjugate in Sp2(A, σ ) to
Û .

Proof This follows from 2.91 and 4.10.

4.4 Action of Sp2(A, �) on quadruples of isotropic lines – the cross ratio

Let (A, σ ) be a unital ring with an anti-involution.We consider the following subspace
of A:

A0 := {bb′ | b, b′ ∈ (Aσ )×}.

A× acts on A0 by conjugation because for b, b′ ∈ (Aσ )×, a ∈ A×:

a(bb′)a−1 = (abσ(a))(σ (a)−1b′)a−1 ∈ A0.

Remark 4.16 It is a well-known fact from linear algebra that for matrix algebras A
over R, C or H, we always have A0 = A×.

Proposition 4.17 Orbits of the action of Sp2(A, σ ) on quadruples of pairwise trans-
verse isotropic lines are in 1-1 correspondence with orbits of the following action of
A× on A0:

η : A× × A0 �→ A0

(a, b) �→ aba−1.

Proof Let (l1, l3, l2, l4) be a quadruple pairwise transverse of isotropic lines. Then up
to action of Sp2(A, σ ), we can assume l1 = (1, 0)T A, l2 = (0, 1)T A, l3 = (b, 1)T A,
l4 = (1, b′)T A with b, b′ ∈ (Aσ )×. Consider the action of the stabilizer of (l1, l2):

diag(a, σ (a)−1)(b, 1)T A = (abσ(a), 1)A,

diag(a, σ (a)−1)(1, b′)T A = (1, σ (a)−1b′a−1)A.

We consider themap (l1, l3, l2, l4) �→ bb′ ∈ A0. This map is well-defined, bijective
and the action of the stabilizer of (l1, l2) (that is isomorphic to A×) induces the action
of A× by conjugation on A0. So we obtain that these two actions are isomorphic.

Definition 4.18 Theconjugacy class of A0 corresponding to thequadruple (l1, l3, l2, l4)
of pairwise transverse isotropic lines is called the cross ratio of (l1, l3, l2, l4).

4.5 Examples of matrix algebras

In this section,we construct explicitly examples of spaces of isotropic lines for classical
matrix algebras. We will use the following notation: for complex numbers, we write
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C{I } to emphasize that the imaginary unit is denoted by I . Similarly, for quaternions,
we write H{I , J , K } to emphasize that the imaginary units are denoted by I , J , K .
The multiplication rule is then I J = K .

Example 4.19 Let (A, σ ) be (Mat(n, R), σ ), (Mat(n, C), σ ), (Mat(n, C), σ̄ ) or
(Mat(n, H), σ̄ ) where σ is the transposition, σ̄ the composition of transposition and
complex/quaternionic conjugation.

Every regular element of x ∈ A2 can be seen as a 2n × n-matrix of maximal rank.
Columns of this matrix are elements ofK

2n considered as a rightK-module whereK is
R,C orH. If we take theK-span of this columns, we obtain n-dimensional submodule
of K

2n denoted by SpanK(x). It is easy to see that the map:

L : P(A2) → Gr(n, K
2n)

x A �→ SpanK(x)

where Gr(n, K
2n) is the space of all n-dimensional submodules of K

2n is a bijection.
We consider the following form (bilinear or sesquilinear depending on σ ) on K

2n :

ω̃(u, v) := σ(u)

(
0 Idn

− Idn 0

)
v

for u, v ∈ K
2n . Then x ∈ Is(ω) if and only if SpanK(x) is isotropic with respect to ω̃,

that means for all u, v ∈ SpanK(x), ω̃(u, v) = 0. So we obtain that L maps bijectively
isotropic lines of A2 to isotropic n-dimensional submodules ofK

2n . Such submodules
are called Lagrangian with respect to ω̃. The space of all Lagrangian with respect to
ω̃ submodules are denoted by Lag(K2n, ω̃).

Example 4.20 Let A = Mat(n, C{I }) ⊗ C{i} with the anti-involution σ̄ ⊗ Id. We use
the map χ : A → A′ (see Appendix B.1.1) to identify A with A′ := Mat(n, C{i}) ×
Mat(n, C{i}). The anti-involution σ ′ := χ ◦ (σ̄ ⊗ Id) ◦ χ−1 induced by σ̄ ⊗ Id on
Mat(n, C{i}) × Mat(n, C{i}) acts in the following way:

(m1,m2) �→ (mT
2 ,mT

1 ).

The map χ can be extended componentwise to the map

χ ′ : Mat2(A) → Mat2(A
′).

Proposition 4.21 Sp2(A, σ̄ ⊗ Id) is isomorphic to GL(2n, C).

Proof First, we note that

Aσ̄⊗Id = Sym(n, C{i}) + Skew(n, C{i})I .
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It is enough, to identify sp2(A, σ̄ ⊗ Id) and Mat2(AR) = Mat(2n, C) as Lie algebras.
First, we take the map χ ′ restricted to sp2(A, σ̄ ⊗ Id):

χ ′ : sp2(A, σ ) → Mat(2n, C{i}) × Mat(2n, C{i})(
a1 + a2 I b1 + b2 I
c1 + c2 I −aT1 + aT2 I

)
�→

((
a1 + a2i b1 + b2i
c1+c2i −aT1 +aT2 i

)
,

(
a1 − a2i b1 − b2i
c1−c2i −aT1 −aT2 i

))
.

where a1, a2 ∈ Mat(n, C{i}), b1, c1 ∈ Sym(n, C{i}), b2, c2 ∈ Skew(n, C{i}). This
is an injective homomorphism of C{i}-Lie algebras as restriction of injective map.
Finally, we take a projection to the first component:

π1 : Mat(2n, C{i}) × Mat(2n, C{i}) → Mat(2n, C{i}).

Easy computation shows that π1 ◦ χ ′ is an isomorphism.

The set (A′)2 can be identified with the space of pairs (x1, x2)T such that x1, x2 ∈
Mat(n, C{i}). We define the sesquilinear form:

ω((x1, x2)
T , (y1, y2)

T ) = σ ′(x1, x2)
(

0 (Idn, Idn)
−(Idn, Idn) 0

)
(y2, y2)

T

= (σ (x2)

(
0 Idn

− Idn 0

)
y1, σ (x1)

(
0 Idn

− Idn 0

)
y2).

Therefore,

Is(ω) = {(l1, l2) | l = x1 Mat(n, C{i}), l2 = x2 Mat(n, C{i}),
x1, x2 regular, ω(x1, x2) = 0}.

Sinceω is non-degenerate, l2 is uniquely determined by l1. Therefore, we can identify:

Is(ω) ∼= {x Mat(n, C{i}) | x regular}.

As in the previous example, we can identify lines inMat(n, C{i})2 with Lagrangian
subspaces of (C2n, ω̃) where:

ω̃(u, v) = uT
(

0 Idn
− Idn 0

)
v.

So the space Is(ω) can be identified with

Is(ω) ∼= {(l1, l2) ∈ Gr(n, C
2n)2 | ω̃(u, v) = 0 for all u ∈ l1, v ∈ l2}.

The form ω̃ is a non-degenerate. Therefore, for l ∈ Gr(n, C
2n) there exists exactly

one ω̃-orthogonal complement l⊥ ∈ Gr(n, C
2n) such that for all u ∈ l, v ∈ l⊥,

ω̃(u, v) = 0. So we can identify

Is(ω) ∼= Gr(n, C
2n)
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and GL(2n, C) acts on Gr(n, C
2n) in the standard way.

Example 4.22 Let A = Mat(n, H{i, j, k})⊗C{I } with the anti-involution σ̄ ⊗ Id. We
use the map ψ : A → A′ (see Appendix B.1.2) to identify A with A′ := Mat(2n, C).
The anti-involution σ ′ := ψ ◦ (σ̄ ⊗ Id)◦ψ−1 on A′ induced by σ̄ ⊗ Id on Mat(2n, C)

acts in the following way:

m �→ −
(

0 Id
− Id 0

)
mT

(
0 Id

− Id 0

)
.

We define the following σ ′-sesquilinear form on (A′)2: for x, y ∈ (A′)2

ω(x, y) = σ ′(x)T
(

0 Id2n
− Id2n 0

)
y.

Proposition 4.23 Sp2(A, σ̄ ⊗ Id) is isomorphic to O(4n, C).

Proof M ∈ Sp2(A
′, σ ′) ∼= Sp2(A, σ̄ ⊗ Id) if and only if

σ ′(M)T
(

0 Id2n
− Id2n 0

)
M =

(
0 Id2n

− Id2n 0

)
,

i.e.

−

⎛
⎜⎜⎝

0 Idn
− Idn 0

0

0
0 Idn

− Idn 0

⎞
⎟⎟⎠MT

⎛
⎜⎜⎝

0 Idn
− Idn 0

0

0
0 Idn

− Idn 0

⎞
⎟⎟⎠ ·

·
(

0 Id2n
− Id2n 0

)
M =

(
0 Id2n

− Id2n 0

)

This is equivalent to:

MT

⎛
⎜⎜⎝

0
0 Idn

− Idn 0
0 − Idn
Idn 0

0

⎞
⎟⎟⎠M =

⎛
⎜⎜⎝

0
0 Idn

− Idn 0
0 − Idn
Idn 0

0

⎞
⎟⎟⎠ .

So the group Sp2(A, σ ) is the group of symmetries of the symmetric bilinear form
form

⎛
⎜⎜⎝

0
0 Idn

− Idn 0
0 − Idn
Idn 0

0

⎞
⎟⎟⎠

onC
4n . But all symmetric bilinear forms onC

4n are conjugated. Therefore, Sp2(A, σ )

is isomorphic to O(4n, C).
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Note that Is(ω) = Is(ω′) for

ω′(x, y) := xT

⎛
⎜⎜⎝

0
0 Idn

− Idn 0
0 − Idn
Idn 0

0

⎞
⎟⎟⎠ y.

As before, we can identify lines in (A′)2 with the space Gr(2n, C
4n) of 2n-

dimensional subspaces of C
4n using the map L (see Example 4.19). Under this map,

the space Is(ω) goes to the space of all maximal ω̃-isotropic subspaces where

ω̃(u, v) = uT

⎛
⎜⎜⎝

0
0 Idn

− Idn 0
0 − Idn
Idn 0

0

⎞
⎟⎟⎠ v

for x, y ∈ C
4n . The group O(ω̃) ∼= O(4n, C) acts on the space of all maximal ω̃-

isotropic subspaces in the standard way.

5 Models for the symmetric space of Sp2(A, �) over Hermitian
algebras

The goal of this Chapter is to construct different models of the symmetric space
for Sp2(A, σ ) for a real Hermitian algebra (A, σ ). In the case when Sp2(A, σ ) is a
classical Hermitian Lie group of tube type, we recover many aspects of their well-
known structure theory.We refer the reader to [16, 21] for standardworks onHermitian
Lie groups and their symmetric spaces.

In this Chapter, we discuss only groups Sp2(A, σ ) for semisimple Hermitian alge-
bras (A, σ ) over the fieldR. In this case, the corresponding symmetric spaces naturally
become Riemannian manifolds. Even if there is no established notion of Riemannian
manifold for spaces defined over general real closed fields, the corresponding sym-
metric spaces still have some kind of “Riemannian structure” on them. For example,
a Sp2(A, σ )-invariant K-valued Riemannian metric is well-defined. Moreover, as we
will see, all the models we are going to describe in this Chapter are semi-algebraic sets
that are semi-algebraically isomorphic to each other. This allows us to define a natu-
ral semi-algebraic structure on symmetric spaces for Sp2(A, σ ) for every semisimple
Hermitian algebra (A, σ ) over any real closed field K.

5.1 “Space of complex structures” model

The first model we construct is the “space of complex structures” model.

Definition 5.1 A complex structure on a right A-module V is an A-linearmap J : V →
V such that J 2 = − Id.
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Let V = A2 and ω be the standard symplectic form on A2. For every complex
structure J on A2, we define the following σ -sesquilinear form

hJ : A2 × A2 → A
(x, y) �→ ω(J (x), y)

We remind the definition of a σ -inner product:

Definition 5.2 A σ -sesquilinear form h on (A2, ω) is called σ -inner product if h is
σ -symmetric and for all regular v ∈ A2, h(v, v) ∈ Aσ+.

We define the space of complex structures by setting

C :=
{
J complex structure on A2 | hJ is an σ -inner product

}
.

We show now that C is a model of the symmetric space of Sp2(A, σ ).

Proposition 5.3 Let J ∈ C and w ∈ Is(ω), then J (w) ∈ Is(ω).

Proof For w ∈ Is(ω),

ω(J (w), J (w)) = hJ (w, J (w)) = σ(hJ (J (w),w)) = σ(ω(w,w)) = 0,

therefore, J (w) ∈ Is(ω).

Proposition 5.4 Let J be a complex structure on A2. Then J ∈ C if and only if there
exists w ∈ Is(ω) such that (J (w),w) is a symplectic basis of A2.

Proof 1. Let J ∈ C and w′ ∈ Is(ω). Since hJ (w
′, w′) = b ∈ Aσ+, we can take

w := w′b− 1
2 , then hJ (w,w) = 1. Then:

ω(J (w), J (w)) = hJ (w, J (w)) = σ(hJ (J (w),w)) = σ(ω(w,w)) = 0,

ω(J (w),w) = hJ (w,w) = 1.

Therefore, (J (w),w) is a symplectic basis of A2.
2. Let w ∈ A2 such that (J (w),w) is a symplectic basis of A2. Then,

hJ (w,w) = ω(J (w),w) = 1

hJ (J (w), J (w)) = ω(J 2(w), J (w)) = −ω(w, J (w)) = 1,

hJ (J (w),w) = ω(J 2(w),w) = −ω(w,w) = 0.

Therefore, (J (w),w) is an orthonormal basis for hJ and in this basis hJ is the standard
σ -inner product, so hJ is an σ -inner product.

Definition 5.5 The standard complex structure on A2 is the map

J0 : A2 → A2

(x, y) �→ (y,−x)
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Theorem 5.6 Sp2(A, σ ) acts on C by conjugation. This action is transitive. The sta-
bilizer of the standard complex structure is KSp2(A, σ ).

In particular, C ∼= Sp2(A, σ )/KSp2(A, σ ) is a model of the symmetric space of
Sp2(A, σ ).

Proof. 1. First, we prove that Sp2(A, σ ) acts on C by conjugation. Let J ∈ C, g ∈
Sp2(A, σ ). Consider J ′ := g−1 Jg. (J ′)2 = g−1 J 2g = − Id so J ′ is a complex
structure on A2. For x ∈ Is(ω), g(x) ∈ Is(ω) and we obtain

hJ ′(x, x) = ω(J ′(x), x) = ω(g−1 Jg(x), x)

= ω(Jg(x), g(x)) = hJ (g(x), g(x)) ∈ Aσ+.

Therefore, hJ ′ is a σ -inner product on A2, i.e. J ′ ∈ C.
2. Second, we prove that this action is transitive. Let J ∈ C, take a symplectic

basis (J (w),w) from the Proposition 5.4. Since Sp2(A, σ ) acts transitively on sym-
plectic bases, there exists g ∈ Sp2(A, σ ) which maps the standard symplectic basis to
(J (w),w). That means, g maps the standard complex structure J0 to J . So the action
is transitive.

3. Finally, compute the stabilizer of J0. g ∈ StabSp2(A,σ )(J0) if and only if g ∈
Sp2(A, σ ) and g ∈ O(hJ0) = U2(A, σ ), i.e.

g ∈ Sp2(A, σ ) ∩ U2(A, σ ) = KSp2(A, σ ).

5.2 Upper half-spacemodel

Now we describe the upper half-space model that generalizes the well-known upper
half-plane model for SL(2, R).

We denote as before by AC the complexification of A, i.e. AC := A ⊗R C. We
extend σ to AC complex linearly, i.e. σC(x + yi) := σ(x) + σ(y)i .

Every element of z ∈ AσC
C

can be uniquely written as z = x + yi where x, y ∈ Aσ .
We denote by Re(z) := x , Im(z) := y. We also have a complex conjugation on AC

given by z̄ = x − yi .

Definition 5.7 The upper half-space is

U := {z ∈ AσC
C

| Im(z) ∈ Aσ+}

Proposition 5.8 The group Sp2(A, σ ) acts transitively on U via Möbius transforma-
tions

z �→ M .z = (az + b)(cz + d)−1, where M =
(
a b
c d

)
.

The stabilizer of 1i is KSp2(A, σ ).
In particular, U is a model of the symmetric space of Sp2(A, σ ).
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Proof First, we show that the action is well defined. Since Sp2(A, σ ) is generated by
matrices

(
a 0
0 σ(a)−1

)
,

(
0 1

−1 0

)
,

(
1 b
0 1

)

where a ∈ A×, b ∈ Aσ , we proof that M .z ∈ U for all z ∈ U on these generators.

IfM :=
(
1 b
0 1

)
with b ∈ Aσ , thenM .z = z+b ∈ Aσ

C
and Im(M .z) = Im(z) ∈ Aσ+.

If M :=
(

0 1
−1 0

)
, then M .z = −z−1 ∈ Aσ

C
. If z = x + iy, then

z−1 = y−1x(y + xy−1x)−1 − i(y + xy−1x)−1,

i.e. Im(M .z) = (y + xy−1x)−1. For y ∈ Aσ+, also y−1 ∈ Aσ+.
Let y−1 = σ(p)p for some p ∈ A×, then

y + xy−1x = y + σ(px)px ∈ Aσ+.

Therefore, Im(M .z) = (y + xy−1x)−1 ∈ Aσ+.

If M :=
(
a 0
0 σ(a)−1

)
for a ∈ A×, then M .z = azσ(a) ∈ Aσ

C
because Aσ is closed

by action of A×. Im(M .z) = a Im(z)σ (a) ∈ Aσ+ because Aσ+ is closed by action of
A×.

To prove the transitivity, we show that for every x ∈ U there exists a Möbius
transformation that sends 1i to z. Let z = x + yi ∈ U then y = u2 for some
u ∈ (Aσ )×. Then

(
1 x
0 1

)(
u 0
0 u−1

)
.(1i) =

(
u xu−1

0 u−1

)
.(1i) = x + yi = z

Finally, let us find the stabilizer of 1i . M =
(
a b
c d

)
stabilizes 1i if and only if

1i = M .1i = (ai + b)(ci + d)−1 = (ai + b)(−c + di)−1i .

So, a = d and c = −b, i.e. M ∈ KSp2(A, σ ).

5.3 Symmetric space of O(h) for an indefinite form h

In order to describe other models of the symmetric space of Sp2(A, σ ), we consider
the following σ -sesquilinear σ -symmetric forms on A2:

Definition 5.9 A σ -sesquilinear σ -symmetric form h on A2 such that there exist a
basis (e1, e2) of A2 such that h(e1, e1) = −1, h(e2, e2) = 1, h(e1, e2) = 0 is called
indefinite.
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The standard indefinite form hst is the σ -sesquilinear σ -symmetric form on A2

given by the matrix

(−1 0
0 1

)
in the standard basis ((1, 0)T , (0, 1)T ) of A2.

We define the group of symmetries of h by :

O(h) := {g ∈ Aut(A2) | h(gx, gy) = h(x, y) for all x, y ∈ A2},

and set

XO(h) := {x A | x ∈ A2 such that h(x, x) ∈ Aσ+}, X := XO(hst ).

Remark 5.10 The space XO(h) is well defined because if x A = yA, i.e. there exists
a ∈ A× such that y = xa, then

h(y, y) = σ(a)h(x, x)a = σ(a)σ (p)pa = σ(pa)pa ∈ Aσ+

where p ∈ A×, σ(p)p = h(x, x) ∈ Aσ+.

Remark 5.11 Since Aut(A2) acts transitively on bases of A2, all O(h) are isomorphic
for indefinite h. Therefore, all XO(h) are also isomorphic.

Proposition 5.12 O(hst ) acts transitively on X with stabilizer of (0, 1)T A equal to
U(A,σ ) ×U(A,σ ) diagonally embedded into O(hst ).

Proof Since hst ((0, 1)T , (0, 1)T ) = 1 ∈ Aσ+, the line (0, 1)T A ∈ X . Let vA ∈ X for
some v ∈ A2. Since hst (v, v) ∈ Aσ+, there exists p ∈ A such that hst (v, v) = σ(p)p.
Let v′ := vp−1, then h(v′, v′) = 1 and v′A = vA.

Consider the vector w := (x, σ (v2)
−1σ(v1)x)T where v = (v1, v2)

T , x = (1 +
v1σ(v1))

1
2 . Then an easy calculation shows that h(w,w) = −1 and h(v,w) = 0. So

we can take the following matrix M := (w, v) ∈ O(hst ). Since M(0, 1)T = v, we
obtain M(0, 1)T A = vA, i.e. O(hst ) acts transitively on X .

Now, we compute the stabilizer of (0, 1)T A. Let

M :=
(
a b
c d

)
∈ O(hst )

stabilize (0, 1)T A, then M(0, 1)T = (b, d), i.e. b = 0. Moreover

(−1 0
0 1

)
=
(

σ(a) σ (c)
0 σ(d)

)(−1 0
0 1

)(
a 0
c d

)
=
(−σ(a) σ (c)

0 σ(d)

)(
a 0
c d

)

=
(−σ(a)a + σ(c)c σ(c)d

0 σ(d)d

)
.

Therefore, σ(d)d = 1, i.e. d is invertible. So we obtain c = 0 and σ(a)a = 1, i.e.
a, d ∈ U(A,σ ).
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Proposition 5.13 The group U(A,σ ) × U(A,σ ) is diagonally embedded into O(hst ) as
a maximal compact subgroup of O(hst ).

In particular, X is a model of the symmetric space of O(hst ).

Proof First, note that the Lie algebra of O(hst ) is:

o(hst ) =
{(

a b
σ(b) d

) ∣∣∣∣ σ(a) = −a ∈ A, σ (d) = −d ∈ A, b ∈ A

}
.

Assume, K is compact subgroup of O(hst ) that contains U(A,σ ) ×U(A,σ ) as a proper

subgroup. Then Lie(K ) contains an element

(
a b

σ(b) d

)
with b �= 0. Therefore,

x :=
(

0 b
σ(b) 0

)
=
(

a b
σ(b) d

)
−
(
a 0
0 d

)
∈ Lie(K )

and

t x =
(

0 tb
tσ(b) 0

)
∈ Lie(K )

for all t ∈ R. Take a polar decomposition of b = uy where u ∈ U(A,σ ), y ∈ Aσ . We
take the spectral decompositions of y: y = ∑k

i=1 λi ci where (ci ) is a complete system
of orthogonal idempotents, λ1, . . . , λk ∈ R.

Further,

x2 =
(
bσ(b) 0
0 σ(b)b

)
.

Therefore,

bσ(b) = u
k∑

i=1

λ2i ci u
−1, σ (b)b =

k∑
i=1

λ2i ci

and

exp(t x) =
(
u
∑k

i=1 cosh(tλi )ci u
−1 u

∑k
i=1 sinh(tλi )ci∑k

i=1 sinh(tλi )ci u
−1 ∑k

i=1 cosh(tλi )ci

)
∈ K .

For t going to infinity, exp(xt) does not converge even up to taking subsequence
unless all λi = 0. But this means that b = 0, so we obtain K = U(A,σ ) ×U(A,σ ). This
contradicts the assumption that U(A,σ ) ×U(A,σ ) is a proper subgroup of K .

Proposition 5.14 The map

� : X → D̊(A, σ ) := {c ∈ A | 1 − σ(c)c ∈ Aσ+}
(a, b)T A �→ ab−1
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is a homeomorphism.

Proof Let x A ∈ X then x = (a, b)T with −σ(a)a + σ(b)b ∈ Aσ+, i.e. there exists
p ∈ A× such that

−σ(a)a + σ(b)b = σ(p)p.

Therefore,

σ(b)b = σ(p)p + σ(a)a ∈ Aσ+,

i.e. b ∈ A×. So for c = ab−1, x A = (c, 1)T A. Moreover, for every line x A ∈ X , the
element c ∈ A such that x A = (c, 1)T A is well defined and 1 − σ(c)c ∈ Aσ+.

For every c ∈ D̊(A, σ ), the line (c, 1)T A ∈ X because

hst ((c, 1)
T , (c, 1)T ) = 1 − σ(c)c ∈ Aσ+.

Therefore, � is a homeomorphism.

Corollary 5.15 O(hst ) acts on D̊(A, σ ) via Möbius transformations

z �→ M .z = (az + b)(cz + d)−1, where M =
(
a b
c d

)
.

This transformation is called Möbius transformation.

Remark 5.16 Since (A, σ ) is Hermitian, by Proposition 2.99 the domain D̊(A, σ ) is
precompact.

5.4 Projective model

Nowwe useX to construct the projective model of the symmetric space of Sp2(A, σ ).
Let AC = A ⊗ C and denote by σC : AC → AC the C-linear extension of σ , i.e.

σC(x + iy) = σ(x) + iσ(y)

for every x, y ∈ A and by σ̄C the C-antilinear extension of σ , i.e.

σ̄C(x + iy) = σ(x) − iσ(y)

for every x, y ∈ A.
As we have seen in the Corollary 2.80, (AC, σ̄C) is Hermitian. We extend ω in the

following way:

ωC(x, y) := σ(x)T
(

0 1
−1 0

)
y.
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The following σ̄ -sesquilinear form is an indefinite form on A2
C
:

h(x, y) := σ̄C(x)T
(
0 i
−i 0

)
y = iωC(x̄, y).

Indeed,

h(y, x) = σ̄C(y)T
(
0 i
−i 0

)
x = σ̄C

(
σ1(x)

T
(
0 i
−i 0

)
y

)
= σ̄C(h(x, y)).

Then in the basis e1 :=
(

1√
2
, i√

2

)T
, e2 :=

(
1√
2
,− i√

2

)T
, the form h is represented

by the matrix

(−1 0
0 1

)
, i.e. h is a σ̄C-sesquilinear indefinite form on A2

C
.

Note, Sp2(A, σ ) acts on A2
C
preserving ωC and h.

Definition 5.17 The space

P := {vAC | v ∈ Is(ωC), h(v, v) ∈ (Aσ̄
C
)+} = Is(ωC) ∩ XO(h)

is called the projective model.

To justify this Definition, we prove the following Proposition:

Proposition 5.18 The group Sp2(A, σ ) acts transitively on P with the stabilizer of
(i, 1)T AC equal to KSp2(A, σ ).

In particular, P is a model of the symmetric space of Sp2(A, σ ).

Proof Let v ∈ Is(ωC) such that h(v, v) ∈ (Aσ̄
C
)+, so vAC ∈ P. We can renormalize

v so that h(v, v) = 2. We write v = u + wi , then (w, u) is a symplectic basis of A2.
Indeed,

2 = h(v, v) = iωC(u − iw, u + iw) = i(ω(u, u) + ω(w,w)

+i(ω(u, w) − ω(w, u)))

= ω(w, u) − ω(u, w) + i(ω(u, u) + ω(w,w));
0 = ωC(v, v) = ω(u, u) − ω(w,w) + i(ω(u, w) + ω(w, u)).

Therefore, ω(u, u) = ω(w,w) = 0 and ω(w, u) = 1, i.e. (w, u) is a symplectic basis
of A2.

Since Sp2(A, σ ) acts transitively on symplectic bases of A2, Sp2(A, σ ) acts tran-
sitively on P.

Now compute the stabilizer of l0 := (i, 1)T AC. Let M = (Mi j ) ∈ Sp2(A, σ ).
M(l0) = l0 if and only if

M11i + M12 = (M21i + M22)i,

i.e.M11 = M22,M21 = −M12. This holds if and only ifM ∈ U2(A, σ )∩Sp2(A, σ ) =
KSp2(A, σ ).
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Definition 5.19 The spaceP is called the the projective model of the symmetric space
of Sp2(A, σ ).

Finally, we describe the Sp2(A, σ )-equivariant homeomorphism between the
“space of complex structures” model C and the projective model P. For this, we
extend every complex structure J on A2 to a complex structure JC on A2

C
in the

C-linear way.

Proposition 5.20 For every complex structure J ∈ C, there exist regular x, y ∈ A2
C

such that JC(x) = xi , JC(y) = −yi . Elements x, y are uniquely defined up to
multiplication by elements of A×

C
.

Proof Since Sp2(A, σ ) acts transitively on C, it is enough to prove the proposition for
the standard complex structure J0.

Since J0(a, b)T = (b,−a)T ,we obtain (b,−a)T = (a, b)T i if and only if b = ai ,
i.e.

x = (a, ai)T = (1, i)T a,

where a ∈ AC arbitrary element. For a ∈ A×, x is regular. Analogously, y = (i, 1)T a
where a ∈ A×

C
arbitrary element.

For a complex structure J ∈ C, we denote by lJ the AC-line yAC such that JC(y) =
−yi .

Corollary 5.21 The map

F : C → P
J �→ l J

defines is an Sp2(A, σ )-equivariant homeomorphism.

5.5 Precompact model

Lastly, we define the precompact model of the symmetric space of Sp2(A, σ ).
For thiswe consider the following Sp2(AC, σC)-transformation thatmaps the indef-

inite form h introduced in the previous section to the standard indefinite form hst :

T := 1√
2

(
1 i
i 1

)
,

i.e. σ̄ (T )T [h]T = diag(−1, 1) = [hst ]. Since T ∈ Sp2(AC, σC), it stabilizes the set
Is(ωC).

Definition 5.22 The space

B := D̊(AσC
C

, σ̄C) := {c ∈ AσC
C

| 1 − c̄c ∈ (Aσ̄C
C

)+}

is called the precompact model.
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To justify this Definition, we prove the following Proposition:

Proposition 5.23 The map

� : T−1P → D̊(AσC
C

, σ̄C)

(a, b)T AC �→ ab−1

is a homeomorphism. The set D̊(AσC
C

, σ̄C) is precompact on AσC
C
.

In particular, D̊(AσC
C

, σ̄C) is a model of the symmetric space of Sp2(A, σ ).

Proof Let v = (v1, v2)
T ∈ Is(ωC) such that vAC ∈ P and v = u + wi where (w, u)

is a symplectic basis of (A2, ω). Then:

2 = h(v, v) = hst (T
−1v, T−1v) = −σ̄C(x1)x1 + σ̄C(x2)x2 ∈ (Aσ̄C

C
)+

where T−1v =: (x1, x2)T . Therefore, σ̄C(x2)x2 = σ̄C(x1)x1 + 2 ∈ (Aσ̄C
C

)+ because

(Aσ̄C
C

)+ is a proper convex cone. This means that x2 is invertible, i.e. x2 ∈ A×
C
,

(c, 1)T := (x1x
−1
2 , 1)T ∈ Is(ωC) and (c, 1)T AC = (T−1v)AC.

(c, 1)T ∈ Is(ωC) if and only if c ∈ AσC
C
, and h((c, 1)T , (c, 1)T ) = 1−c̄c ∈ (Aσ̄C

C
)+.

Therefore, �(T−1v) ∈ D̊(Aσ
C
, σ̄C).

The map � is injective because T is injective and, if x1x
−1
2 = �(x1, x2)T =

�(y1, y2)T = y1y
−1
2 , then (y1, y2)T = (x1, x2)T x

−1
2 y2, i.e. (x1, x2)T AC =

(y1, y2)T AC.
The map � is surjective because for every c ∈ D̊(AσC

C
, σ̄C), (c, 1)T AC =

(T−1v)AC for v := T (c, 1)T
√
2(1− c̄c)− 1

2 . Then v ∈ Is(ωC) and h(v, v) = 2. There-
fore, v = u + wi for (w, u) a symplectic basis of (A2, ω). Therefore, vAC ∈ T−1P.

The set D̊(AσC
C

, σ̄C) is precompact in AσC
C

because it is a subset of the following
domain:

D(AσC
C

, σ̄C) := {a ∈ AσC
C

| 1 − āa ∈ (Aσ̄C
C

)≥0} ⊆ AσC
C

that is compact by Proposition 2.99.

Remark 5.24 The group T−1 Sp2(A, σ )T < Sp2(AC, σC) acts on D̊(AσC
C

, σ̄C) by
Möbius transformations.

5.6 Connection betweenmodels

In this section, we consider Sp2(A, σ )-equivariant homeomorphisms between the pro-
jective model, the upper half-space model and precompact model of the symmetric
space for Sp2(A, σ ).

It is easy to check that the following map:

F : P → U

(x1, x2)T AC �→ x1x
−1
2
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is an Sp2(A, σ )-equivariant homeomorphism.Aswe have seen in the Proposition 5.23,
the map

� ◦ T−1 : P → D̊(AσC
C

, σ̄C) := {c ∈ AσC
C

| 1 − c̄c ∈ (Aσ̄C
C

)+}.

defines another Sp2(A, σ )-equivariant homeomorphism.
Themaps F and�◦T−1 can be seen as different coordinate charts for the projective

model P of the symmetric space for Sp2(A, σ ).

5.7 Compactification and Shilov boundary

In this section, we construct a natural compactification of the symmetric space of
Sp2(A, σ ).

As we have seen, the precompact model D̊(AσC
C

, σ̄C) is a precompact domain in
AσC
C
, so taking the topological closure of D̊(AσC

C
, σ̄C) in AσC

C
, we obtain the compact-

ification

D(AσC
C

, σ̄C) := {c ∈ AσC
C

| 1 − c̄c ∈ (Aσ̄C
C

)≥0}

of D̊(AσC
C

, σ̄C).

Definition 5.25 We call

Š(AσC
C

, σ̄C) := {c ∈ AσC
C

| 1 − c̄c = 0}

the Shilov boundary of the precompact model D̊(AσC
C

, σ̄C).

Note, that Š(AσC
C

, σ̄C) = U(AC,σ̄C) ∩ AσC
C

. So the Shilpov boundary is a compact
subspace of D(AσC

C
, σ̄C).

Remark 5.26 The map �−1 extends to the boundary of D(AσC
C

, σ̄C) and remains
continuous and bijective. Since the boundary is compact, it is a homeomorphism.
Therefore, we can see the boundary also in the projective model. In particular, we can
see the Shilov boundary there.

The next Proposition describes the Shilov boundary in the projective model.

Proposition 5.27 The preimage of the Shilov boundary Š(AσC
C

, σ̄C) inP(Is(ωC)) under
the map � ◦ T−1 gives a compact subset of the boundary of the projective model. It
consists of all lines of the form x AC such that x ∈ Is(ω) regular.

Proof Note that the line l ∈ Is(ω) is of the form x AC for some x ∈ Is(ω) if and only
if l̄ = l.

Assume c ∈ Š(AσC
C

, σ̄C), i.e. c̄−1 = c. Then

(� ◦ T−1)T ◦ �−1(c) = �

((
0 i
i 0

)(
c̄
1

))
= �

((
1
c̄i

))
= c̄−1 = c
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i.e. for l = (c, 1)T AC, l̄ = l.
If we take a line x AC for some x = (x1, x2)T ∈ Is(ω), then

c := (� ◦ T−1)(x AC) = (x1 − i x2)(−i x1 + x2)
−1.

Since x ∈ Is(ω), c ∈ Aσ
C

c̄c = (x1 + i x2)(i x1 + x2)
−1(x1 − i x2)(−i x1 + x2)

−1

= i(x1 + i x2)(x1 − i x2)
−1(x1 − i x2)(−i x1 + x2)

−1

= i(x1 + i x2)(−i x1 + x2)
−1 = (x1 + i x2)(x1 + i x2)

−1 = 1.

Therefore, (� ◦ T−1)(x A) ∈ Š(AσC
C

, σ̄C).

Corollary 5.28 The space P(Is(ω)) of isotropic lines of (A2, ω) embedded into
P(Is(ωC)) as:

x A �→ x AC

is a Shilov boundary in the projective model. This is a closed (even compact) orbit of
the action of Sp2(A, σ ) on the boundary of the projective model.

6 Models for the symmetric space of Sp2(A, �) over complexified
algebras

The goal of this Chapter is to construct different models of the symmetric space for
Sp2(A, σ ) where A is the complexification of a real Hermitian algebra.

To simplify the notation in this and the next chapters, we denote by (AR, σR) a real
Hermitian algebra. By A = AR ⊗R C, we denote the complexification of AR. The
complex linear extension of σR is denoted by σ , the complex antilinear extension of
σR is denoted by σ̄ .

Similar to the approach for real Hermitian algebras, where we considered their
complexification, we consider here quaternionifications of A (see Sect. 2.9).

As we noticed in the previous chapter, this construction works for every real closed
field. All the models we are going to describe are semi-algebraic sets, and they are
semi-algebraically isomorphic to each other. This allows us to define a natural semi-
algebraic structure on symmetric spaces of Sp2(A, σ ) for a complexification of every
semisimple Hermitian algebra (A, σ ) over any real closed field K.

6.1 “Space of quaternionic structures” model

Let (AR, σR) be a Hermitian algebra with anti-involution. We consider the complex-
ification A := AR ⊗R C. As we have seen in Corollary 2.80, (A, σ̄ ) is a Hermitian
algebra.
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Definition 6.1 A quaternionic structure on an right A-module V is an additive map
J : V → V such that J 2 = − Id and J (xa) = J (x)ā for all x ∈ V , a ∈ A.

Let V = A2 and ω be the standard symplectic form on A2. For every quaternionic
structure J on A2, we can define the form:

hJ : A2 × A2 → A
(x, y) �→ ω(J (x), y)

that is σ̄ -sesquilinear. Indeed, for a1, a2 ∈ A

hJ (xa1, ya2) = ω(J (xa1), ya2) = ω(J (x)ā1, ya2) = σ̄ (a1)hJ (x, y)a2.

Definition 6.2 The space:

C := {J quaternionic structure on A2 | hJ is a σ̄ -inner product}

is called the space of quaternionic structures.

We show that C is a model of the symmetric space of Sp2(A, σ ).

Definition 6.3 The standard quaternionic structure on A2 is the map

J0 : A2 → A2

(x, y) �→ (ȳ,−x̄)

Remark 6.4 hJ0 is the standard σ̄ -inner product on A2.

Proposition 6.5 Let J be a quaternionic structure on A2. J ∈ C if and only if there
exists a regular isotropic w ∈ A2 such that (J (w),w) is a symplectic basis.

Proof 1.Let J ∈ C andw ∈ A2 some regular isotropic element. SincehJ (w,w) ∈ Aσ̄+,
we can normalize w so that hJ (w,w) = 1. Then:

ω(J (w), J (w)) = hJ (w, J (w)) = σ̄ (hJ (J (w),w)) = σ̄ (ω(w,w)) = 0,

ω(J (w),w) = hJ (w,w) = 1.

Therefore, (J (w),w) is a σ -symplectic basis.
2. Let w ∈ A2 and (J (w),w) is a σ -symplectic basis. Then,

hJ (w,w) = ω(J (w),w) = 1

hJ (J (w), J (w)) = ω(J 2(w), J (w)) = ω(J (w),w) = 1,

hJ (J (w),w) = ω(J 2(w),w) = −ω(w,w) = 0.

Therefore, (w, J (w)) is an orthonormal basis for hJ , and in this basis, hJ is the
standard σ -inner product, so hJ is an σ̄ -inner product.
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Corollary 6.6 For every J ∈ C, for every v ∈ Is(ω), J (v) ∈ Is(ω).

Theorem 6.7 Sp2(A, σ ) acts on C in the following way:

(g, J ) �→ g−1 ◦ J ◦ g.

This action is transitive. The stabilizer of the standard quaternionic structure is
KSpc2(A, σ ).

In particular, C is a model of the symmetric space of Sp2(A, σ ).

Proof. 1. First, we prove that Sp2(A, σ ) acts on C by conjugation. Let J ∈ C, g ∈
Sp2(A, σ ). Consider J ′ := g−1 ◦ J ◦ g. Then

(J ′)2 = g−1 ◦ J ◦ g ◦ g−1 ◦ J ◦ g = − Id .

So J ′ is a quaternionic structure on A2. For a regular x ∈ A2,

hJ ′(x, x) = ω(J ′(x), x) = ω(g−1 Jg(x), x) = ω(Jg(x), g(x))

= hJ (g(x), g(x)) ∈ Aσ̄+.

Therefore, hJ ′ is an inner product on A2, i.e. J ′ ∈ C.
2. Second, we prove that the action is transitive. Let J ∈ C, take a symplectic basis

(J (w),w) from the Proposition 6.5. Since Sp2(A, σ ) acts transitively on symplec-
tic bases, there exists g ∈ Sp2(A, σ ) which maps the standard symplectic basis to
(J (w),w). That means, g maps the standard complex structure J0 to J . So the action
is transitive.

3. Finally, compute the stabilizer of J0. g ∈ StabSp2(A,σ )(J0) if and only if g ∈
Sp2(A, σ ) and g ∈ O(hJ0) = U2(AC, σ̄ ), i.e.

g ∈ Sp2(A, σ ) ∩ U2(A, σ̄ ) = KSpc2(A, σ ).

Remark 6.8 Since any quaternionic structure is a C-antilinear map, if we write the
action of Sp2(A, σ ) in the matrix form, we need to add the complex conjugation: i.e.
let [J ] be the matrix for the quaternionic structure J , then

[g−1 ◦ J ◦ g] = g−1[J ]ḡ.

6.2 Upper half-spacemodel for Sp2(A, �)

Let AR be an Hermitian R-algebra with an anti-involution σR. We assume A :=
AR ⊗R C{I } to be the complexification of AR. We denote here the imaginary unit by
I because the algebra A sometimes is already a complex algebra where we just forget
about its complex structure, so it may contain i as an element. In order to be more
precise, we do not use the letter i in our construction.

We denote by σ the complex linear extension of σR. We denote by σ̄ the complex
antilinear extension of σR.
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We denote by AH the quaternionification of AR, i.e. AH := AR ⊗R H{I , J , K }.
By our convention form the previous Sect. 2.9, we have A ⊂ AH.

We extend σ to AH quaternionic linearly, i.e.

σ0 := σ(x) + Jσ(y) = σ(x) + σ(ȳ)J = σ(x) + σ̄ (y)J .

So Aσ0
H

= FixAH
(σ0) = Aσ ⊕ Aσ̄ J is well defined.

Every element of z ∈ Aσ0
H

can be uniquely written as z = x + y J where x ∈
Aσ , y ∈ Aσ̄ . We denote by Re(z) := x , Im(z) := y. We also have a quaternionic
conjugation on AH given by z̄ = x̄ − J ȳ = x̄ − y J .

Definition 6.9 The upper half-space is

U := {z ∈ Aσ0
H

| Im(z) ∈ Aσ̄+}

Proposition 6.10 The group Sp2(A, σ ) acts on U via Möbius transformation

z �→ M .z = (az + b)(cz + d)−1, where M =
(
a b
c d

)

transitively with the stabilizer of 1J equal to KSpc2(A, σ ).
In particular, U is a model for the symmetric space for Sp2(A, σ ).

Proof First, we show that the action is well defined. Since Sp2(A, σ ) is generated by
matrices

(
a 0
0 σ(a)−1

)
,

(
0 1

−1 0

)
,

(
1 b
0 1

)

where a ∈ A×, b ∈ Aσ , we proof M .z ∈ U on these generators.

IfM :=
(
1 b
0 1

)
withb ∈ Aσ , thenM .z = z+b ∈ Aσ0

H
and Im(M .z) = Im(z) ∈ Aσ̄+.

If M :=
(

0 1
−1 0

)
, then M .z = −z−1 ∈ Aσ0

H
. Let z = x + y J , then it is easy to

check that z−1 = ȳ−1 x̄ b̄ − bJ , where b = Im(M .z) = (x̄ y−1x + y)−1.
We need to check that b ∈ Aσ̄+. Since y ∈ Aσ̄+, we have y−1 ∈ Aσ̄+. Moreover,

x̄ y−1x ∈ Aσ̄≥0 for any x ∈ Aσ . Because Aσ̄+ is a convex cone, x̄ y−1x + y ∈ Aσ̄+.
Therefore, b = (x̄ y−1x + y)−1 ∈ Aσ̄+

IfM :=
(
a 0
0 σ(a)−1

)
for a ∈ A×, thenM .z = azσ(a) ∈ Aσ0

H
. Further, Im(M .z) =

a Im(z)σ (a) ∈ Aσ̄+ because Aσ̄+ is closed under action by congruence of A×.
To prove the transitivity, we show that for every x ∈ U there exists a Möbius

transformation that sends 1J to z. Let z = x + y J ∈ U then y = u2 for some
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u ∈ (Aσ̄ )×. Then
(
1 x
0 1

)(
u 0
0 σ(u)−1

)
.(1J ) =

(
u xσ(u)−1

0 σ(u)−1

)
.(1J ) = x + u Jσ(u)

= x + uσ̄ (u)J = x + y J = z

Finally, let us find the stabilizer of 1J . An element M =
(
a b
c d

)
stabilizes 1J if

and only if

1J = M .1J = (aJ + b)(cJ + d)−1 = (aJ + b)(−c̄ + d̄ J )−1 J .

So, a = d̄ and c = −b̄, i.e. M ∈ KSpc2(A, σ ).

6.3 Projective model for Sp2(A, �)

Now we define the projective model of the symmetric space of Sp2(A, σ ). For this,
we consider the following quaternionic extension of A:

AH := H[A, AR, i, j] = AR ⊗R H{i, j, k}.

This space can be embedded into Mat2(A) as a subalgebra in the following way:

AH ↪→ Mat2(A)

a1 + a2 j �→
(

a1 a2
−ā2 ā1

)
.

The anti-involution σ̄ T on Mat2(A) restricts to the following anti-involution on AH:

σ1(a1 + a2 j) := σ̄ (a1) − σ(a2) j,

wherea1, a2∈ A. Because (A, σ̄ ) isHermitian, by theProposition2.78, (Mat2(A), σ̄ T )

is Hermitian and, therefore, (AH, σ1) is Hermitian as well.
We denote:

Aσ1
H

:= FixAH
(σ1), (Aσ1

H
)+ := θH(A×

H
)

where

θH : AH → Aσ1
H

a �→ σ1(a)a.

We also consider the following anti-involution on AH:

σ0(a1 + a2 j) := σ(a1) + σ̄ (a2) j,
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where a1, a2 ∈ A and extend ω in the following way:

ωH(x, y) := σ0(x)
T
(

0 1
−1 0

)
y.

The following σ1-sesquilinear form is an indefinite form on A2
H
:

h(x, y) := σ1(x)
T
(

0 j
− j 0

)
y.

Indeed,

h(y, x) = σ1(y)
T
(

0 j
− j 0

)
x = σ1

(
σ1(x)

T
(

0 j
− j 0

)
y

)
= σ1(h(x, y)).

Then in the basis e1 :=
(

1√
2
,

j√
2

)T
, e2 :=

(
1√
2
,− j√

2

)T
, the form h is represented

by the matrix

(−1 0
0 1

)
, i.e. h is a σ1-sesquilinear indefinite form on A2

H
.

Proposition 6.11 Sp2(A, σ ) acts on A2
H
preserving h. So we can see Sp2(A, σ ) as a

subgroup of O(h).

Proof Let x, y ∈ A2
H
, M ∈ Sp2(A, σ ), then

h(Mx, My) = σ1(Mx)T
(

0 j
− j 0

)
My = σ1(x)

T σ̄ (M)T j

(
0 1

−1 0

)
My

= σ1(x)
T jσ(M)T

(
0 1

−1 0

)
My = σ1(x)

T
(

0 j
− j 0

)
y = h(x, y).

So M preserves h.

Every quaternionic structure J on A2 can be extended additively to a quaternionic
structure JH on A2

H
in the following linear way:

JH(x(a + bj)) := J (x)(ā + b̄ j).

where x ∈ A2, a, b ∈ A.

Proposition 6.12 For every quaternionic structure J ∈ C, there exist regular x, y ∈
A2
H
such that JH(x) = x j , JH(y) = −y j . The elements x, y are uniquely defined up

to multiplication by elements of A×
H
.

Proof Since Sp2(A, σ ) acts transitively on C, it is enough to prove the proposition for
the standard quaternionic structure J0.

Since

J0(a1 + a2 j, b1 + b2 j)
T = (b̄1 + b̄2 j,−ā1 − ā2 j)

T ,
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we obtain

(b̄1 + b̄2 j,−ā1 − ā2 j)
T = (a1 + a2 j, b1 + b2 j)

T j = (−a2 + a1 j,−b2 + b1 j)
T

if and only if ā1 = b2, ā2 = −b1, i.e.

x = (a1 + a2 j,−ā2 + ā1 j)
T = (a1 + a2 j, j(a1 + a2 j))

T = (1, j T )a,

where a = a1 + a2 j ∈ AH arbitrary element. The element x is regular if and only if
a ∈ A×

H
. Analogously, y = ( j, 1)T a where a = a1 + a2 j ∈ A×

H
arbitrary element.

For a quaternionic structure J ∈ C, we denote by lJ the AH-line yAH such that
JC(y) = −y j .

We consider the spaces of isotropic elements and isotropic lines of (A2
H
, ωH):

Is(ωH) := {x | x ∈ A2
H
regular, ωH(x, x) = 0},

P(Is(ωH)) := {x A | x ∈ Is(ωH)}.

We also consider the symmetric space of O(h):

XO(h) := {x A | h(x, x) ∈ (Aσ1
H

)+}.

Definition 6.13 We call the space

P := XO(h) ∩ P(Is(ωH))

the projective model.

To justify this Definition, we prove the following Proposition:

Proposition 6.14 The map

F : C → P
J �→ l J

defines is a homeomorphism that is equivariant under the action of Sp2(A, σ ).
In particular, P is a model of the symmetric space of Sp2(A, σ ).

Proof 1. Show that lJ ∈ XO(h). Since Sp2(A, σ ) acts transitively on C, it is enough to
check it the standard quaternionic structure J0:

h(( j, 1)T , ( j, 1)T ) = σ1( j, 1)

(
0 j

− j 0

)(
j
1

)
= (− j, 1)

(
j
1

)
= 2 ∈ (Aσ1

H
)+.
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2. Show that l J ∈ P(Is(ω)). It is enough to prove it for J0:

ω(( j, 1)T , ( j, 1)T ) = σ0( j, 1)

(
0 1

−1 0

)(
j
1

)
= (−1, j)

(
j
1

)
= 0.

3. Show that F is surjective. Let v = u + w j ∈ AH such that vAH ∈ P. Since
h(v, v) ∈ (Aσ1

H
)+, we can renormalize v so that h(v, v) = 2. Since v ∈ Is(ω),

0 = ωH(v, v) = ω(u, u) + jω(w,w) j + ω(u, w) j + jω(w, u)

= ω(u, u) − ω(w,w) +
(
ω(u, w) + ω(w, u)

)
j

So we have:

ω(u, u) = ω(w,w)

ω(u, w) = −ω(w, u).

Moreover,

2 = h(v, v) = h(u + w j, u + w j) = h(u, u) − jh(w,w) j + h(u, w) j − jh(w, u).

Notice, for u, w ∈ A2, h(u, w) = ω(ū, w̄) j = jω(u, w). Therefore,

h(v, v) = ω(ū, ū) j + ω(w,w) j − ω(ū, w̄) + ω(w, u).

= 2ω(w, u) + 2ω(w,w) j

So we have:

ω(w, u) = 1

ω(u, u) = ω(w,w) = 0

It means that (w, u) is a symplectic basis of (A2, ω). We can define the following
quaternionic structure: J (u) = w, J (w) = −u. By the Proposition 6.5, J ∈ C. Since

JH(v) = JH(u + w j) = w − u j = −(u + w j) j = −v j,

we obtain F(J ) = vA, i.e. F is surjective.
4. The map F is injective because if lJ = l J ′ = yA for J , J ′ ∈ C and some

y = y1 + y2 j ∈ A2
H
. Then J (y1) = J ′(y1) = −y2, J (y2) = J ′(y2) = y1 and (y1, y2)

is a basis of A2, i.e. J = J ′.
5. Now, show the equivariance of F . LetM ∈ Sp2(A, σ ), J ∈ C and u, w ∈ A2 such

that w := J (u), J (w) = −u. Then MJM−1(Mu) = Mw, MJM−1(Mw) = −Mu.
That means that for v = u + w j ,

F(MJM−1) = (Mv)AH = M(vAH) = MF(J ),
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i.e. F is equivariant with respect to the Sp2(A, σ )-action.

6.4 Precompact model for Sp2(A, �)

Now we define the precompact model of the symmetric space of Sp2(A, σ ). As we
have seen in the Proposition 5.14, the spaceX = XO(hst ) for the standard σ1-indefinite
form on A2

H
can be seen as a precompact domain

D̊(AH, σ1) = {c ∈ AH | 1 − σ1(c)c ∈ (Aσ1
H

)+}.

To see the symmetric space for Sp2(A, σ ) as a subset of this domain, we need an
AH-linear transformation that maps h to the standard indefinite form. We can take the
following matrix:

T := 1√
2

(
1 j
j 1

)
.

Then σ1(T )T [h]T = diag(−1, 1) = [hst ] and T−1P ⊆ X . Notice, T ∈ Sp2(AH, σ ),
therefore it stabilizes the set of isotropic elements of (A2

H
, ω).

Definition 6.15 The space

B := D̊(Aσ0
H

, σ1) := D̊(AH, σ1) ∩ Aσ0
H

= {c ∈ Aσ0
H

| 1 − σ1(c)c ∈ (Aσ1
H

)+}

is called the precompact model.

To justify this Definition, we prove the following Proposition.

Proposition 6.16 The imageof T−1Punder thehomeomorphism� : X → D̊(AH, σ1)

is D̊(Aσ0
H

, σ1) which is precompact in Aσ0
H
.

In particular, D̊(Aσ0
H

, σ1) is a model of the symmetric space of Sp2(A, σ ).

Proof To characterize the image of the symmetric space for Sp2(A, σ ) inside
D̊(AH, σ1), we remind that (x1, x2)T ∈ Is(ω) if and only if σ0(x1)x2 ∈ Aσ0

H
. There-

fore, (c, 1)T is isotropic if and only if σ0(c) ∈ Aσ0
H
, i.e. c ∈ Aσ0

H
.

�(T−1P) = {c ∈ Aσ0
H

| 1 − σ1(c)c ∈ (Aσ1
H

)+} ⊆ Aσ0
H

.

The domain D̊(Aσ0
H

, σ1) is precompact in Aσ0
H
because it is a subset of the following

domain:

D(Aσ0
H

, σ1) = {c ∈ Aσ0
H

| 1 − σ1(c)c ∈ (Aσ1
H

)≥0} ⊆ Aσ0
H

.

that is compact by Proposition 2.99.

Remark 6.17 The group T−1 Sp2(A, σ )T acts on D̊(Aσ0
H

, σ1) by Möbius transforma-
tions.
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6.5 Connection betweenmodels

Consider a Hermitian algebra (AR, σR) and its complexification A = AR⊗RC. In this
section, we consider Sp2(A, σ )-equivariant homeomorphisms between the projective
model, the upper half-space model and precompact model of the symmetric space for
Sp2(A, σ ).

It is easy to check that the map:

F : P → U

(x1, x2)AH �→ x1x
−1
2

is an Sp2(A, σ )-equivariant homeomorphism.
As we have seen in the Proposition 6.16, the map

� ◦ T−1 : P → D̊(Aσ0
H

, σ1) = {c ∈ Aσ0
H

| 1 − σ1(c)c ∈ (Aσ1
H

)+}.

defines another Sp2(A, σ )-equivariant homeomorphism.
Themaps F and�◦T−1 can be seen as different coordinate charts for the projective

model P of the symmetric space for Sp2(A, σ ).

6.6 Compactification and Shilov boundary

In this section, we construct a natural compactification of the symmetric space of
Sp2(A, σ ).

Let (A, σ ) be the complexification of a Hermitian algebra as before. The space

D̊(Aσ0
H

, σ1) = {c ∈ Aσ0
H

| 1 − σ1(c)c ∈ (Aσ1
H

)+}

is precompact. We take the topological closure of D̊(Aσ0
H

, σ1) in Aσ0
H
:

D(Aσ0
H

, σ1) := {c ∈ Aσ0
H

| 1 − σ1(c)c ∈ (Aσ1
H

)≥0}.

Definition 6.18 We call

Š(Aσ0
H

, σ1) := {c ∈ Aσ0
H

| 1 − σ1(c)c = 0}

Shilov boundary of the precompact model D̊(Aσ0
H

, σ1).

Note, that Š(Aσ0
H

, σ1) is compact as a closed subspace of a compact space
D(Aσ0

H
, σ1).

Remark 6.19 Themap�−1 extends to the boundary of D(Aσ0
H

, σ1) and remains contin-
uous and bijective. Since the boundary is compact, it is a homeomorphism. Therefore,
we can see the boundary also in the projective model. In particular, we can see the
Shilov boundary there.
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The next Proposition describes the Shilov boundary in the projective model.

Proposition 6.20 The preimage of the Shilov boundary Š(Aσ0
H

, σ1) in Is(ωH) the map
� ◦ T−1 gives a compact subset of the boundary of the projective model. It consists
of all lines of the form x AH such that x ∈ Is(ω).

Proof Note that the line l ∈ Is(ωH) is of the form x AH for some x ∈ Is(ω) if and only
if η(l) = l where η : AH → AH the following involution

η(c1 + c2 j) := c1 − c2 j

for c1, c2 ∈ AC{i}. Notice, η is an involution on AH and

σ1(σ0(c1 + c2 j)) = c̄1 − c̄2 j = − jη(c1 + c2 j) j .

Assume c ∈ Š(Aσ0
H

, σ1), i.e. σ1(c)−1 = c, σ0(c) = c. Then

(� ◦ T−1)η(T ◦ �−1(c)) = �

((
0 j
j 0

)(
η(c)
1

))
= �

((
j

jη(c)

))

= − jη(c)−1 j = σ1(σ0(c))
−1 = σ1(c)

−1 = c

i.e. for l = (c, 1)T AH, η(l) = l.
If we take a line x AH for some x = (x1, x2)T ∈ Is(ω), then

c := (� ◦ T−1)(x A) = (x1 − j x2)(− j x1 + x2)
−1.

Since x ∈ Is(ω) ⊂ Is(ωH), c ∈ Aσ0
H
. Further

σ1(c)c = σ1(σ0(c))c = (x̄1 + j x̄2)( j x̄1 + x̄2)
−1(x1 − j x2)(− j x1 + x2)

−1

= (x̄1 + j x̄2)( j x̄1 + x̄2)
−1( j x̄1 + x̄2)(− j)(− j x1 + x2)

−1

= (x̄1 + j x̄2)(− j)(− j x1 + x2)
−1 = (− j x1 + x2)(− j x1 + x2)

−1 = 1.

Therefore, (� ◦ T−1)(x A) ∈ Š(Aσ0
H

, σ1).

Corollary 6.21 The space P(Is(ω)) of isotropic lines of (A2, ω) embedded into
P(Is(ωH)) as:

x A �→ x AH

is a Shilov boundary in the projective model. This is a closed (even compact) orbit of
the action of Sp2(A, σ ) on the boundary of the projective model.
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7 Realizations of classical symmetric spaces

In this section we apply the general construction of the different models of the sym-
metric space associated to Sp2(A, σ ) to give explicit models for the symmetric spaces
of the classical Lie groups that can be realized as Sp2(A, σ ). This applies in particular
to Sp(2n, C), GL(n, C) and O(4n, C).

We construct explicit examples of models of symmetric space for classical Hermi-
tian Lie groups of tube type. We will always denote by AR a real Hermitian algebra,
the complexified algebra will be denoted by A := AR ⊗R C. The quaternionification
of AR will be denoted by AH.

For the algebras Mat(n, R) and Mat(n, C), we denote by σ the transposition. For
Mat(n, C), we denote by σ̄ the composition of transposition and complex conjugation.
For Mat(n, H{i, j, k}), we denote by σ0 the anti-involution acting in the following
way:

σ0(a + bj) := aT + b̄T j,

and by σ1 the anti-involution acting in the following way:

σ1(a + bj) := āT − bT j

for a, b ∈ Mat(n, C{i}). In particular, we use the same notation in the case n = 1, i.e.
σ̄ is the complex conjugation on C.

To denote different models of the symmetric space for a group G that can be seen
as Sp2(A, σ ) for some real or complex A and anti-involution σ , we use the following
letters:U(G) for the upper half-spacemodel,P(G) for the projective model,B(G) for
the precompact model and C(G) for the “space of complex/quaternionic structures”
model.

7.1 Algebra (Mat(n, R), �) and its complexification

Let AR := Mat(n, R) be the real algebra with the anti-involution σ given by transpo-
sition. Then

A = Mat(n, R) ⊗R C = Mat(n, C),

Sp2(Mat(n, C), σ ) = Sp(2n, C), Sp2(Mat(n, R), σ ) = Sp(2n, R),

AH = Mat(n, H), Aσ = Sym(n, C), Aσ̄+ = Herm+(n, C),

σ0(M1 + M2 j) = σ(M1) + σ̄ (M2) j = MT
1 + M̄T

2 j .

σ1(M1 + M2 j) = σ̄ (M1) − σ(M2) j = M̄T
1 − MT

2 j .

where M1, M2 ∈ Mat(n, C).

Aσ0
H

= {M1 + M2 j ∈ Mat(n, H) | M1 ∈ Sym(n, C), M2 ∈ Herm(n, C)}.
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Example 7.1 The upper half-space model of the symmetric space of Sp(2n, C) is:

U(Sp(2n, C)) = {M1 + M2 J | M1 ∈ Sym(n, C), M2 ∈ Herm+(n)}
⊂ Mat(n, H).

The Siegel upper half space of Sp(2n, R) is the real locus of this space:

U(Sp(2n, R)) = {M1 + M2 J | M1 ∈ Sym(n, R), M2 ∈ Sym+(n, R)}
⊂ U(Sp(2n, C)).

Example 7.2 The precompact model of the symmetric space of Sp(2n, C) is :

B(Sp(2n, C))

= {M1 + M2 j ∈ Aσ0
H

| Idn −(M̄1 − M̄2 j)(M1 + M2 j) ∈ Herm+(n, H)}

The symmetric space for Sp(2n, R) can be seen as the intersection of B(Sp(2n, C))

with Mat(n, C{ j}):

B(Sp(2n, R))

= {M1 + M2 j ∈ Sym(n, C{ j}) | Idn −(M1 − M2 j)(M1

+M2 j) ∈ Herm+(n, C{ j})}
= {M ∈ Sym(n, C{ j}) | Idn −M̄M ∈ Herm+(n, C{ j})} ⊂ B(Sp(2n, C)).

Example 7.3 We consider x, y ∈ A2

ω(x, y) = σ0(x)
T
(

0 Idn
− Idn 0

)
y,

h(x, y) = σ1(x)
T
(

0 Idn j
− Idn j 0

)
y.

Then the projective model of Sp(2n, C) is:

P(Sp(2n, C)) = {x AH | x ∈ A2
H
, ω(x, x) = 0, h(x, x) ∈ Herm+(n, H)}.

The Shilov boundary corresponds in this model to the space:

Š(Sp(2n, C)) ∼= {x AH | x ∈ A2
H
, ω(x, x) = h(x, x) = 0}

∼= {x A | x ∈ A2, ω(x, x) = 0}.

The projective model for Sp(2n, R) can be seen as:

P(Sp(2n, R)) = {x AC{ j} | x ∈ A2
C{ j}, ω(x, x) = 0, h(x, x) ∈ Herm+(n, C{ j})}
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where C{ j} ⊂ H and AC{ j} = AR ⊗R C{ j} ∼= A. P(Sp(2n, R)) can be embedded
intoP(Sp(2n, C)) using the following injective map: for x ∈ C{ j}, x AC{ j} �→ x AH.
The Shilov boundary corresponds in this model to the space:

Š(Sp(2n, R)) ∼= {x AC{ j} | x ∈ A2
R
, ω(x, x) = h(x, x) = 0}

∼= {x AR | x ∈ A2
R
, ω(x, x) = 0}.

Wecan also construct the projectivemodel in terms ofLagrangians ofH2n . Consider
H

2n as a right module over H. We can identify a line x AH for a regular x ∈ A2
H
with

a n-dimensional submodule of H
2n in the following way:

L(x A) := SpanH(xe1, . . . , xen) ⊂ H
2n

where ei is the i-th basis vector (considered as a column) of the standard basis of H
n .

In fact, the map L is well-defined (does not depend on the choice of a regular x ∈ x A)
and, moreover, it is a bijection.

We define two forms on H
2n : for u, v ∈ H

2n ,

ω̃(u, v) := σ0(u)T
(

0 Idn
− Idn 0

)
v,

h̃(u, v) := σ1(u)T
(

0 j Idn
− j Idn 0

)
v.

If we take x ∈ Is(ω), then L(x A) ∈ Lag(H2n, ω̃). Using the map L , we obtain the
following projective model for Sp(2n, C) ∼= Sp2(A, σ ):

P′(Sp(2n, C)) = {l ∈ Lag(H2n, ω̃) | ∀v ∈ l \ {0}, h̃(v, v) > 0}.

The Shilov boundary corresponds in this model to the space:

Š(Sp(2n, C)) ∼= {l ∈ Lag(H2n, ω̃) | ∀v ∈ l \ {0}, h̃(v, v) = 0} ∼= Lag(C2n, ω̃).

The projective model for the symmetric space of Sp(2n, R) ∼= Sp2(AR, σR) is:

P′(Sp(2n, R)) = {l ∈ Lag(C{ j}2n, ω̃) | ∀v ∈ l \ {0}, h̃(v, v) > 0}.

It can be embedded to the projective model of Sp(2n, C) by the map:

Lag(C{ j}2n, ω̃) → Lag(H2n, ω̃)

l �→ SpanH(l)
.

The Shilov boundary corresponds in this model to the space:

Š(Sp(2n, R)) ∼= {l ∈ Lag(C{ j}2n, ω̃) | ∀v ∈ l \ {0}, h̃(v, v) = 0} ∼= Lag(R2n, ω̃).
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Example 7.4 Now we construct the “space of quaternionic structures” model and the
“space of complex structures” model. The quaternionic structure on A can be seen as
a 2n × 2n-matrix J acting on A2 as J (x) = J x̄ for x ∈ A2. Since J (J (x)) = J J x̄ =
−x , J J̄ = − Idn .

The corresponding σ̄ -sesquilinear form is then

hJ (x, y) = ω(J (x), y) = x̄ T J T
(

0 Idn
− Idn 0

)
y.

So we obtain the “space of quaternionic structures” model for Sp(2n, C) :

C(Sp(2n, C)) :=
{
J ∈ Mat(2n, C) | J T

(
0 Idn

− Idn 0

)
∈ Herm+(n, C), J J̄ =− Id

}
.

The space of complex structures on A2
R
can be seen as a subspace of C(Sp(2n, C))

because every complex structure can be extended in the unique way to the quaternionic
structure on A2 in the following way: for a complex structure J we define

JC(x + yi) := J (x) − J (y)i

where x, y ∈ AR. So we obtain the inclusion of the space of complex structures
for Sp(2n, R) into the space of quaternionic structures for Sp(2n, C) as subspace of
quaternionic structures fixing A2

R
⊂ A2:

C(Sp(2n, R)) :=
{
J ∈ Mat(2n, R) | J T

(
0 Idn

− Idn 0

)
∈Sym+(n, R), J 2 = − Id2n

}

={J ∈ C(Sp(2n, C)) | J ∈ Mat(2n, R)}.

7.2 Algebra (Mat(n, C), �̄) and its complexification

In this section, we consider the algebra AR := Mat(n, C{I }) with the anti-involution
σ̄ given by transposition and complex conjugation. Then

A = Mat(n, C{I }) ⊗R C{i},
Sp2(AR, σ̄ ) = U(n, n),

Sp2(A, σ̄ ⊗ Id) = GL(2n, C).

AH = Mat(n, C{I }) ⊗R H{i, j, k}.

Example 7.5 First, we construct the upper half-space model. In the Sect. B.1.1, we
studied the following C{I }-algebras isomorphism:

χ : Mat(n, C{i}) ⊗R C{I } → Mat(n, C{I }) × Mat(n, C{I })
a + bi �→ (a + bI , a − bI )
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where a, b ∈ Mat(n, C{I }).
We have seen,

χ(AR) = χ(Mat(n, C{i})) = {(m, m̄) | m ∈ Mat(n, C{I })},
χ(Aσ̄⊗Id) = {(m,mT ) | m ∈ Mat(n, C{i})} ∼= Mat(n, C).

χ(Aσ̄⊗σ̄ ) = Herm(n, C{I }) × Herm(n, C{I }),
χ(Aσ̄⊗σ̄+ ) = Herm+(n, C{I }) × Herm+(n, C{I }).

So we have the following model for the symmetric space for GL(2n, C):

U(GL(2n, C)) =
{(

m11

mT
11

)
+
(
m12
m22

)
J

∣∣∣∣ m11 ∈ Mat(n, C{I }),
m12,m22 ∈ Herm+(n, C{I })

}
⊂

⊂ H[Mat(n, C{I }) × Mat(n, C{I }), χ(Mat(n, C{i})), (I , I ), J ].

Since Aσ
R

= AR ∩ Aσ̄⊗Id = AR ∩ Aσ̄⊗σ̄ = Herm(n), we obtain the symmetric space
for U(n, n) is:

U(U(n, n)) ∼=
{(

m1
m̄1

)
+
(
m2
m̄2

)
j

∣∣∣∣ m1 ∈ Herm(n, C{I }),
m2 ∈ Herm+(n, C{I })

}
⊂ U(GL(2n, C)).

To see U(U(n, n)) as a subset of Mat(n, C{I }) ×Mat(n, C{I }), we have to identify J
and (I , I ) = χ(1 ⊗ I ), so we get

U(U(n, n))

= {
(m1 + m2 I , m̄1 + m̄2 I ) | m1 ∈ Herm(n, C{I }),m2 ∈ Herm+(n, C{I })}

⊂ Mat(n, C{I }) × Mat(n, C{I }).

In a pair (m1 + m2 I , m̄1 + m̄2 I ) for m1 ∈ Herm(n, C{I }),m2 ∈ Herm+(n, C{I }),
the second component is completely determined by the first one. It is easy to see,
because m2 I is skew-Hermitian and m1 + m2 I corresponds to the decomposition of
an element from Mat(n, C{I }) in Hermitian and skew-Hermitian part. Therefore, m1
and m2 are well-defined by m1 + m2 I . Therefore, we can identify

U(U(n, n)) ∼= {m1 + m2 I | m1 ∈ Herm(n, C{I }),m2 ∈ Herm+(n, C{I })}.

Example 7.6 Now we construct the precompact model. We use the map ψ from the
Sect. B.1.2 to identify AH with Mat(2n, C).

ψ : Mat(n, H{i, j, k}) ⊗R C{I } → Mat(2n, C{i})
(q1 + q2 j) + (p1 + p2 j)I �→

(
q1 + p1i q2 + p2i

−q̄2 − p̄2i q̄1 + p̄1i

)
.

where q1, q2, p1, p2 ∈ Mat(n, C{i}).
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The anti-involution σ̄ ⊗ σ0 on Mat(n, C{I }) ⊗R H{i, j, k} induces the following
anti-involution

ψ ◦ (σ̄ ⊗ σ0) ◦ ψ−1

on Mat(2n, C): m �→
(
0 Id
Id 0

)
m̄T

(
0 Id
Id 0

)
. Therefore,

ψ(Aσ̄⊗σ0
H

) =
{
m ∈ Mat(2n, C{i})

∣∣∣∣m =
(
0 Id
Id 0

)
m̄T

(
0 Id
Id 0

)}
.

Similarly, the anti-involution σ̄ ⊗ σ1 on Mat(n, C{I }) ⊗R H{i, j, k} induces the fol-
lowing anti-involution

ψ ◦ (σ̄ ⊗ σ1) ◦ ψ−1

on Mat(2n, C): M �→ M̄T and so ψ(Aσ̄⊗σ1
H

) = Herm(2n, C). So we obtain the
following precompact model for the symmetric space of GL(2n, C):

B(GL(2n, C)) = {M ∈ ψ(Aσ̄⊗σ0
H

) | Id2n −M̄T M ∈ Herm+(2n, C)}.

To see the precompact forU(n, n) as a subspace ofB(GL(2n, C)), we have to intersect
of with ψ(Mat(n, C{I }) ⊗R C{ j}). We remind from the Sect. B.2.2

ψ(Mat(n, C{I }) ⊗R C{ j})
=
{
m ∈ Mat(2n, C{i})

∣∣∣∣m = −
(

0 Id
− Id 0

)
m

(
0 Id

− Id 0

)}
.

Since

ψ(Mat(n, C{I }) ⊗R C{ j}) ∩ ψ(Aσ̄⊗σ0
H

) =
{(

a b
−b a

) ∣∣∣∣ a, b ∈ Herm(n, C)

}
,

we obtain:

B(U(n, n)) ∼=
{(

a b
−b a

) ∣∣∣∣
(
Idn −a2 − b2 ba − ab

ab − ba Idn −a2 − b2

)
∈ Herm+(2n, C)

}

⊂ B(GL(2n, C)).

Under themapχ from the Sect. B.1.1, A can be identifiedwithMat(n, C)×Mat(n, C),

so we obtain the following precompact model for U(n, n):

B(U(n, n))

= {(M, MT ) | M ∈ Mat(n, C), Idn −M̄T M ∈ Herm+(n, C), Idn
−M̄MT ∈ Herm+(n, C)}.



82 Page 84 of 119 D. Alessandrini et al.

The second component if the pair (M, MT ) is determined by the first one. Moreover,
if Idn −M̄T M ∈ Herm+(n, C) then Idn −M̄MT ∈ Herm+(n, C). Therefore, we can
identify:

B(U(n, n)) = {M ∈ Mat(n, C) | Idn −M̄T M ∈ Herm+(n, C)}.

Remark 7.7 The description for the precompact model of the symmetric space of
U(n, n) seen as Sp2(Mat(n, C), σ̄ ) agreeswith the description for the projectivemodel
of the symmetric space of U(n, n) seen as O(hst ) for hst the standard indefinite form
(see Sect. 5.3).

Example 7.8 We now construct the projective model. Under ψ , the anti-involution
σ̄ ⊗ σ0 on Mat(n, C{I }) ⊗R H{i, j, k} induces the following anti-involution

σ ′ := ψ ◦ (σ̄ ⊗ σ0) ◦ ψ−1

on Mat(2n, C): M �→
(

0 Idn
Idn 0

)
M̄T

(
0 Idn
Idn 0

)
. Therefore,

ψ(Aσ̄⊗σ0
H

) =
{
M ∈ Mat(2n, C)

∣∣∣∣
(

0 Idn
Idn 0

)
M̄T

(
0 Idn
Idn 0

)}
.

Similarly, the anti-involution σ̄ ⊗ σ1 on Mat(n, C{I }) ⊗R H{i, j, k} induces the fol-
lowing anti-involution

σ ′′ := ψ ◦ (σ̄ ⊗ σ1) ◦ ψ−1

on Mat(2n, C): M �→ M̄T and so ψ(Aσ̄⊗σ1
H

) = Herm(2n, C).
Further, for x, y ∈ (A′)2

ω(x, y) = σ ′(x)T
(

0 Id2n
− Id2n 0

)
y

=
(

0 Idn
Idn 0

)
x̄ T

⎛
⎜⎜⎝

0 Idn
Idn 0

0

0
0 Idn
Idn 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 Idn 0
0 0 0 Idn

− Idn 0 0 0
0 − Idn 0 0

⎞
⎟⎟⎠ y

=
(

0 Idn
Idn 0

)
x̄ T

⎛
⎜⎜⎝

0 0 0 Idn
0 0 Idn 0
0 − Idn 0 0

− Idn 0 0 0

⎞
⎟⎟⎠ y,

h(x, y) = σ ′′(x)T
(

0 Id2n i
− Id2n i 0

)
y = x̄ T

(
0 Id2n i

− Id2n i 0

)
y.
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Note, x ∈ Is(ω) if and only if x ∈ Is(ω′) where

ω′(x, y) = x̄ T

⎛
⎜⎜⎝

0 0 0 Idn
0 0 Idn 0
0 − Idn 0 0

− Idn 0 0 0

⎞
⎟⎟⎠ y

We obtain the projective model for GL(2n, C):

P(GL(2n, C)) = {x A′ | x ∈ (A′)2, ω′(x, x) = 0, h(x, x) ∈ Herm+(2n, C)}.

The Shilov boundary corresponds in this model to the space:

Š(GL(2n, C)) ∼= {x A′ | x ∈ (A′)2, ω′(x, x) = h(x, x) = 0}.

The projective model for U(n, n) can be seen as a subspace of P(GL(2n, C)) in
the following way. As we have seen in the Sect. B.2.1,

ψ(AR ⊗R C{ j}) =
{(

q p
−p q

) ∣∣∣∣ p, q ∈ Mat(n, C{i})
}

=
{
m ∈ Mat(2n, C{i})

∣∣∣∣m = −
(

0 Idn
− Idn 0

)
m

(
0 Idn

− Idn 0

)}
.

Therefore, if we define

δ(x) := −

⎛
⎜⎜⎝

0 Idn
− Idn 0

0

0
0 Idn

− Idn 0

⎞
⎟⎟⎠ x

(
0 Idn

− Idn 0

)

for x ∈ (A′)2
H
. We obtain

P(U(n, n)) ∼= {x A′ ∈ P(GL(2n, C)) | x ∈ (A′)2
H
, δ(x) = x}

We can also see the projective model for U(n, n) in another way. We consider
the isomorphism χ from the Sect. B.1.1 identifying Mat(n, C{I }) ⊗R C{i} with
Mat(n, C{i}) × Mat(n, C{i}) =: A′′. Then the anti-involution induced by σ̄ ⊗ Id

χ ◦ (σ̄ ⊗ Id) ◦ χ−1

on Mat(n, C{i}) × Mat(n, C{i}) acts in the following way:

(m1,m2) �→ (mT
2 ,mT

1 ).
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The involution induced by σ̄ ⊗ σ̄

χ ◦ (σ̄ ⊗ σ̄ ) ◦ χ−1

on Mat(n, C{i}) × Mat(n, C{i}) acts in the following way:

(m1,m2) �→ (m̄T
1 , m̄T

2 ).

Note,

(A′′)2 = Mat(n, C{i})2 × Mat(n, C{i})2.

We take x1, x2, y1, y2 ∈ Mat(n, C{i})2, then we can define

ω((x1, x2), (y1, y2))

:= χ ◦ (σ̄ ⊗ Id) ◦ χ−1(x1, x2)

(
0 (Idn, Idn)

−(Idn, Idn) 0

)
(y1, y2)

=
(
xT2

(
0 Idn

− Idn 0

)
y1, x

T
1

(
0 Idn

− Idn 0

)
y2

)
,

h((x1, x2), (y1, y2)) :=
(
x̄ T1

(
0 Idn i

− Idn i 0

)
y1, x̄

T
2

(
0 Idn i

− Idn i 0

)
y2

)
.

We obtain the projective model for U(n, n):

P(U(n, n)) =
{
(x1, x2)A

′′
∣∣∣∣ x1, x2 ∈ Mat(n, C{i})2, ω̂(x1, x2) = 0,
ĥ(x1, x1), ĥ(x2, x2) ∈ Herm+(n, C)

}

where ω̂(x1, x2) := xT1

(
0 Idn

− Idn 0

)
y2, ĥ(x, y) := x̄ T1

(
0 Idn i

− Idn i 0

)
y1. Since

ω̂ is non-degenerate, the line x2 Mat(n, C{i} is uniquely defined by x1.
Let us check that for the pair (x1, x2) such that ω̂(x1, x2) = 0, ĥ(x1, x1) ∈

Herm+(n, C), we have always ĥ(x2, x2) ∈ Herm+(n, C). As we have seen in the
Sect. 5.6, we can always choose x1 = (m1, 1)T , x2 = (m2, 1)T . Then

ω̂(x1, x2) = mT
1 − m2 = 0,

ĥ(x1, x1) = i(m̄T
1 − m1) ∈ Herm+(n, C).

These two conditions imply

ĥ(x2, x2) = i(m̄T
2 − m2) = i(m̄1 − mT

1 ) = i(m̄T
1 − m1)

T ∈ Herm+(n, C).

Therefore, we can write the following identification:

P(U(n, n)) ∼=
{
x Mat(n, C{i}) | ĥ(x, x) ∈ Herm+(n, C)

}
.
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The Shilov boundary corresponds in this model to the space:

Š(U(n, n)) ∼=
{
x Mat(n, C{i}) | ĥ(x, x) = 0

}
.

To construct the projective model in terms of Lagrangians, similarly to the Exam-
ple 7.3, we can identify the space of A′-lines of (A′)2 with the space Gr(2n, C

4n) of
2n-dimensional subspaces of C

4n by the rule:

L(x A′) := SpanH(xe1, . . . , xe2n)

where ei is the i-th basis vector (considered as a column) of the standard basis of C
2n .

We define two forms on C
4n : for u, v ∈ C

4n ,

ω̃(u, v) := ūT

⎛
⎜⎜⎝

0 0 0 Idn
0 0 Idn 0
0 − Idn 0 0

− Idn 0 0 0

⎞
⎟⎟⎠ v,

h̃(u, v) := ūT
(

0 i Id2n
−i Id2n 0

)
v.

The projective model for the symmetric space of GL(4n, C) ∼= Sp2(A, σ ) can be seen
as the following space:

P′(GL(4n, C)) = {l ∈ Lag(C4n, ω̃) | ∀v ∈ l \ {0}, h̃(v, v) > 0}.

where Lag(C4n, ω̃) is the space of all maximal isotropic subspaces ofC
4n with respect

to ω̃. The Shilov boundary corresponds in this model to the space:

Š(GL(4n, C)) = {l ∈ Lag(C4n, ω̃) | ∀v ∈ l \ {0}, h̃(v, v) = 0}.

We can see the the projective model for the symmetric space of U(n, n) ∼=
Sp2(AR, σR) as a subspace of P(GL(4n, C)):

P′(U(n, n)) ∼= {l ∈ P(GL(4n, C)) | δ′(l) = l}

where

δ′ : C
4n → C

4n

v �→

⎛
⎜⎜⎝

0 Idn
− Idn 0

0

0
0 Idn

− Idn 0

⎞
⎟⎟⎠ v.

We can also see another projective model for the symmetric space of U(n, n) ∼=
Sp2(AR, σ̄ ) if we identify again A = Mat(n, C)⊗RCwithMat(n, C)×Mat(n, C) =:
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A′ by the map χ form the Sect. B.1.1.

χ : Mat(n, C{I }) ⊗R C{i} → Mat(n, C{i}) × Mat(n, C{i})
a + bI �→ (a + bi, a − bi)

As before, we can identify every line x A′ ⊂ (A′)2 with pair of n-dimensional sub-
spaces of C

2n . We define two forms on C
2n : for u, v ∈ C

2n

ω̃(u, v) := uT
(

0 Idn
− Idn 0

)
v,

h̃(u, v) := ūT
(

0 Idn i
− Idn i 0

)
v.

The pair (l1, l2) of n-dimensional subspaces of C
2n is called ω-orthogonal if for all

v ∈ l1, u ∈ l2, ω̃(v, u) = 0. So we can see the projective model of the symmetric
space for U(n, n):

P′(U(n, n)) = {(l1, l2)ω̃-orthogonal pair | ∀u ∈ l1 ∪ l2 \ {0}, h̃(u, u) > 0}.

Since ω is non-degenerate, the space l2 is completely determined by l1. And as we
have seen forP(U(n, n)), if for all u ∈ l1 \ {0}, h̃(u, u) > 0, then for all u ∈ l2 \ {0},
h̃(u, u) > 0. Therefore, we can identify

P′(U(n, n)) ∼= {l ∈ Gr(n, C
2n) | ∀u ∈ l \ {0}, h̃(u, u) > 0}.

The Shilov boundary corresponds in this model to the space:

Š(U(n, n)) ∼= {l ∈ Gr(n, C
2n) | ∀u ∈ l \ {0}, h̃(u, u) = 0}.

Remark 7.9 The description for the projectivemodel of the symmetric space ofU(n, n)

seen as Sp2(Mat(n, C), σ̄ ) agrees with the description for the projective model of the
symmetric space of U(n, n) seen as O(hst ) for hst the standard indefinite form (see
Sect. 5.3).

Example 7.10 Now we define the “space of quaternionic structures” model and the
“space of complex structures” model. We use the map χ from the Sect. B.1.1,

χ : Mat(n, C{I }) ⊗R C{i} → Mat(n, C{i}) × Mat(n, C{i})
a + bI �→ (a + bi, a − bi)

to identify Awith A′ := Mat(n, C{i})×Mat(n, C{i}). The involution Id⊗σ̄ ismapped
under χ to the involution

(m1,m2) �→ (m̄2, m̄1).

on Mat(n, C{i}) × Mat(n, C{i}).
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If we take a quaternionic structure J on A2 then we define

J ′ := χ ◦ J ◦ χ−1.

If we see J ′ as a pair (J1, J2) of 2n×2n complexmatrices then J1 J̄2 = − Id2n because
for (m1,m2) ∈ (A′)2 ∼= Mat(n, C{i})2 × Mat(n, C{i})2,

J ′(m1,m2) = (J1, J2)(m̄2, m̄1) = (J1m̄2, J2m̄1),

−(m1,m2) = (J ′)2(m1,m2) = (J1 J2m̄1, J2 J1m̄2).

The anti-involution induced by σ̄ ⊗ Id

χ ◦ (σ̄ ⊗ Id) ◦ χ−1

on Mat(n, C{i}) × Mat(n, C{i}) acts in the following way:

(m1,m2) �→ (mT
2 ,mT

1 ).

We take the standard symplectic structure on (A′)2: for x1, x2, y1, y2 ∈ Mat(n, C{i})

ω((x1, x2), (y1, y2)) = χ ◦ (σ̄ ⊗Id) ◦ χ−1(x1, x2)

(
0 (Idn, Idn)

−(Idn, Idn) 0

)
(y1, y2)

=
(
xT2

(
0 Idn

− Idn 0

)
y1, x

T
2

(
0 Idn

− Idn 0

)
y1

)
.

For a quaternionic structure on (A′)2 seen as pair of matrices (J1, J2), we define

h(J1,J2)((x1, x2), (y1, y2))

:=
(

(J1 x̄1)
T
(

0 Idn
− Idn 0

)
y1, (J2 x̄2)

T
(

0 Idn
− Idn 0

)
y2

)

=
(
x̄ T1 J T1

(
0 Idn

− Idn 0

)
y1, x̄

T
2 J T2

(
0 Idn

− Idn 0

)
y2

)
.

The “space of quaternionic structures” model for GL(2n, C) is then:

C(GL(2n, C)) :=
⎧⎨
⎩(J1, J2)

∣∣∣∣∣∣
J1, J2 ∈ Mat(2n, C), J1 J̄2 = − Id2n,

J T1

(
0 Idn

− Idn 0

)
, J T2

(
0 Idn

− Idn 0

)
∈ Herm+(2n, C)

⎫⎬
⎭ .

Since J1 J̄2 = − Id2n , by given J1 such that J T1

(
0 Idn

− Idn 0

)
∈ Herm+(2n, C), we

can calculate J2 = − J̄−1
1 . Then

J T2

(
0 Idn

− Idn 0

)
= − J̄−T

1

(
0 Idn

− Idn 0

)
=
((

0 Idn
− Idn 0

)
J̄ T1

)−1

∈ Herm+(2n, C)
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if and only if

(
0 Idn

− Idn 0

)
J̄ T1 ∈ Herm+(2n, C)

if and only if

J̄ T1

(
0 Idn

− Idn 0

)
∈ Herm+(2n, C).

Therefore, we can identify

C(GL(2n, C)) ∼=
{
J ∈ Mat(2n, C)

∣∣∣∣ J T
(

0 Idn
− Idn 0

)
∈ Herm+(2n, C)

}
.

In this presentation of the symmetric space, GL(2n, C) acts on it in the followingway:

(g, J ) �→ −g−1 J

(
0 Idn

− Idn 0

)
ḡ−T

(
0 Idn

− Idn 0

)

for g ∈ GL(2n, C).
Since

χ(AR) = {(m, m̄) | m ∈ Mat(n, C{i})},

the “space of quaternionic structures” model for U(n, n) ∼= Sp2(AR, σ̄ ) can be seen
as a subset of C(GL(2n, C)) stabilizing χ(AR). (J1, J2) ∈ C(GL(2n, C)) stabilizes
χ(AR)2 if and only if for all m ∈ Mat(n, C{i})2,

(J1, J2)(m, m̄) = (J1(m), J2(m̄)) = (m′, m̄′),

for some m′ ∈ Mat(n, C)2, i.e. J1 = J2. Therefore,

C(U(n, n)) ∼= {(J , J ) ∈ C(GL(2n, C))}.

We can also see C(U(n, n)) directly as the space of complex structures on A2
R
:

C(U(n, n))=
{
J ∈ Mat(2n, C)

∣∣∣∣ J̄ T
(

0 Idn
− Idn 0

)
∈ Herm+(2n, C), J J̄ = − Id2n

}
.
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7.3 Algebra Mat(n, H) and its complexification

In this section, we consider the algebra AR := Mat(n, H{I , J , K }) with the anti-
involution σ1 given by transposition and quaternionic conjugation. Then

A = Mat(n, H{I , J , K }) ⊗R C{i},
Sp2(AR, σ1) = SO∗(4n),

Sp2(A, σ1 ⊗ Id) = O(4n, C),

AH = Mat(n, H{I , J , K }) ⊗R H{i, j, k}.

Example 7.11 First, we construct the upper half-space model. In the Sect. B.1.2, we
studied the following isomorphism of algebras:

ψ : Mat(n, H{I , J , K }) ⊗R C{i} → Mat(2n, C{I })
(q1 + q2 J ) + (p1 + p2 J )i �→

(
q1 + p1 I q2 + p2 I

−q̄2 − p̄2 I q̄1 + p̄1 I

)
.

where q1, q2, p1, p2 ∈ Mat(n, C{I }). This is a C{i}-C{I }-isomorphism, i.e. ψ(xi) =
ψ(x)I for x ∈ Mat(n, H{I , J , K }) ⊗R C{i}.

We remind, ψ(Idn ⊗i) = Id2n I and

ψ(AR) = ψ(Mat(n, H{I , J , K })) =
{(

q1 q2
−q̄2 q̄1

) ∣∣∣∣ q1, q2 ∈ Mat(n, C)

}
.

Under ψ , the anti-involution σ1 ⊗ Id on Mat(n, H{I , J , K }) ⊗R C{i} indices the
following anti-involution

σ ′ := ψ ◦ (σ1 ⊗ Id) ◦ ψ−1

on Mat(2n, C{I }) = Mat2(Mat(n, C{I })):

σ ′(m) = −
(

0 Idn
− Idn 0

)
mT

(
0 Idn

− Idn 0

)

for m ∈ Mat(2n, C{I }). So we have:

ψ(Aσ1⊗Id) =
{
m ∈ Mat(2n, C{I })

∣∣∣∣m = −
(

0 Idn
− Idn 0

)
mT

(
0 Idn

− Idn 0

)}

= sp(2n, C{I }).

We consider the anti-involution σ1 ⊗ σ̄ on Mat(n, H{I , J , K }) ⊗R C{i} where σ̄ acts
on C{i} by the complex conjugation. It induces the following anti-involution

σ̃ = ψ ◦ (σ1 ⊗ σ̄ ) ◦ ψ−1
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on Mat(2n, C):

σ̃ (m) = m̄T .

So, as expected, (Mat(2n, C{I }), σ̃ ) is a Hermitian algebra and

ψ(Aσ1⊗σ̄
+ ) = Herm+(2n).

Since ψ(1⊗ i) = Id2n I , we have to do quaternionification with respect to Id I . So
the symmetric space is:

U(O(4n, C)) = {M1 + M2 j | M1 ∈ sp(2n, C), M2 ∈ Herm+(2n)}
⊂ H[Mat(2n, C{I }), ψ(Mat(n, H{I , J , K })), Id2n I , j].

Since Aσ
R

= Aσ̄⊗Id ∩ Aσ̄⊗σ̄ , the real locus of this space is the symmetric space of
SO∗(4n):

U(SO∗(4n)) ∼=
= {M1 + M2 j | M1 ∈ sp(2n, C) ∩ Herm(2n), M2 ∈ sp(2n, C) ∩ Herm+(2n)}

⊂ U(O(4n, C)).

After identification j and Id2n I , we obtain it as a subset of Mat(2n, C{I }):

U(SO∗(4n))

= {M1 + M2 I | M1 ∈ sp(2n, C) ∩ Herm(2n), M2 ∈ sp(2n, C) ∩ Herm+(2n)}
⊂ Mat(2n, C{I }).

Example 7.12 Now we construct the precompact model. We use the map

φ : Mat(n, H{I , J , K }) ⊗R H{i, j, k} → Mat(4n, R)

from the Sect. B.1.3 to identify AH with Mat(4n, R) defined on generators of AH as
follows:

φ(a ⊗ i) =

⎛
⎜⎜⎝

0 a 0 0
−a 0 0 0
0 0 0 −a
0 0 a 0

⎞
⎟⎟⎠ , φ(a ⊗ j) =

⎛
⎜⎜⎝

0 0 a 0
0 0 0 a

−a 0 0 0
0 −a 0 0

⎞
⎟⎟⎠ ,

φ(a ⊗ k) =

⎛
⎜⎜⎝

0 0 0 a
0 0 −a 0
0 a 0 0

−a 0 0 0

⎞
⎟⎟⎠ , φ(aI ⊗ 1) =

⎛
⎜⎜⎝
0 −a 0 0
a 0 0 0
0 0 0 −a
0 0 a 0

⎞
⎟⎟⎠ ,
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φ(aJ ⊗ 1) =

⎛
⎜⎜⎝
0 0 −a 0
0 0 0 a
a 0 0 0
0 −a 0 0

⎞
⎟⎟⎠ , φ(aK ⊗ 1) =

⎛
⎜⎜⎝
0 0 0 −a
0 0 −a 0
0 a 0 0
a 0 0 0

⎞
⎟⎟⎠

where a ∈ Mat(n, R).
As we have seen, the anti-involution σ1 ⊗ σ0 corresponds under φ to the following

anti-involution on Mat(4n, R): M �→ −�MT� where

� :=

⎛
⎜⎜⎝

0 0 0 Idn
0 0 − Idn 0
0 Idn 0 0

− Idn 0 0 0

⎞
⎟⎟⎠ .

The anti-involution σ1 ⊗ σ1 corresponds under φ to the transposition on Mat(4n, R).
So we obtain the following precompact model of the symmetric space of O(4n, C):

B(O(4n, C)) = {M ∈ φ(Aσ1⊗σ0
H

) | 1 − MT M ∈ Sym+(4n, R)}

where

φ(Aσ1⊗σ0
H

) = {M ∈ Mat(4n, R) | M = −�MT�} ∼= sp(4n, R).

To see the precompact modelB(SO∗(4n)) for the symmetric space of SO∗(4n) as a
subspace of B(O(4n, C)), we have to intersect B(O(4n, C)) with
φ(Mat(n, H{I , J , K }) ⊗R C{ j}). We remind from the Sect. B.2.2:

φ(Mat(n, H{I , J , K }) ⊗R C{ j})
= {m ∈ Mat(4n, R) | M = −φ(Idn ⊗ j)Mφ(Idn ⊗ j)} .

Therefore, we obtain:

B(SO∗(4n)) ∼= {M ∈ B(O(4n, C)) | M = −φ(Idn ⊗ j)Mφ(Idn ⊗ j)} .

Under the map ψ from the Sect. B.1.2, we can identify A with Mat(2n, C). The
anti-involution σ1 ⊗ Id corresponds to the following anti-involution on Mat(2n, C):

m �→ −
(

0 Id
− Id 0

)
mT

(
0 Id

− Id 0

)
.

Therefore, ψ(Aσ1⊗Id) = sp(2n, C).
The anti-involution σ1 ⊗ σ̄ corresponds to the following anti-involution on

Mat(2n, C): M �→ M̄T . Therefore, we obtain the precompact model for SO∗(4n):

B(SO∗(4n)) = {M ∈ sp(2n, C) | 1 − M̄T M ∈ Herm+(2n, C)}.
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Example 7.13 Now we construct the projective model. As we have seen, the map φ

defines an R-algebra isomorphism:

φ : AH → Mat(4n, R) =: A′.

Moreover, the anti-involution σ1 ⊗ σ0 corresponds under ψ to the following anti-
involution σ ′

0 on Mat(4n, R): σ ′
0(M) = −�MT� where

� :=

⎛
⎜⎜⎝

0 0 0 Idn
0 0 − Idn 0
0 Idn 0 0

− Idn 0 0 0

⎞
⎟⎟⎠ .

The anti-involution σ1 ⊗ σ1 corresponds under φ to the transposition on Mat(4n, R).
Further, for x, y ∈ (A′)2

ω(x, y) = σ ′
0(x)

T
(

0 Id4n
− Id4n 0

)
y

= −�xT
(

� 0
0 �

)⎛⎜⎜⎝
0 0 Id2n 0
0 0 0 Id2n

− Id2n 0 0 0
0 − Id2n 0 0

⎞
⎟⎟⎠ y

= −�xT

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 Idn
0 0 0 0 0 0 − Idn 0
0 0 0 0 0 Idn 0 0
0 0 0 0 − Idn 0 0 0
0 0 0 − Idn 0 0 0 0
0 0 Idn 0 0 0 0 0
0 − Idn 0 0 0 0 0 0
Idn 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

y

h(x, y) = xT

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 Idn 0
0 0 0 0 0 0 0 Idn
0 0 0 0 − Idn 0 0 0
0 0 0 0 0 − Idn 0 0
0 0 − Idn 0 0 0 0 0
0 0 0 − Idn 0 0 0 0
Idn 0 0 0 0 0 0 0
0 Idn 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

y.

By definition of h, we use that

φ(Idn ⊗ j) =

⎛
⎜⎜⎝

0 0 Idn 0
0 0 0 Idn

− Idn 0 0 0
0 − Idn 0 0

⎞
⎟⎟⎠ .
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Note, x ∈ Is(ω) if and only if x ∈ Is(ω′) where

ω′(x, y) = xT

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 Id n

0 0 0 0 0 0 − Id n 0
0 0 0 0 0 Id n 0 0
0 0 0 0 − Id n 0 0 0
0 0 0 − Id n 0 0 0 0
0 0 Id n 0 0 0 0 0
0 − Id n 0 0 0 0 0 0
Id n 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

y.

So we obtain the projective model for the symmetric space of O(4n, C):

P(O(4n, C)) = {x A′ | x ∈ (A′)2, ω′(x, x) = 0, h(x, x) ∈ Sym+(4n, R)}.

We can see the Shilov boundary in this model as the space:

Š(O(4n, C)) ∼= {x A′ | x ∈ (A′)2, ω′(x, x) = h(x, x) = 0}.

The projective model for SO∗(4n) can be seen as a subspace ofP(O(4n, C)) in the
following way. As we have seen in the Sect. B.2.2,

ψ(AR ⊗R C{ j}) = {m ∈ Mat(4n, R) | m = −φ(1 ⊗ j)mφ(1 ⊗ j)} .

Therefore,

P(SO∗(4n)) ∼= {x A′ ∈ P(GL(2n, C)) | x = −φ(1 ⊗ j)xφ(1 ⊗ j)}.

To see another projective model for the symmetric space of SO∗(4n), we remind
that A = Mat(n, H) ⊗R C is to Mat(2n, C) =: A′′ isomorphic under the map ψ

from the Sect. B.1.2. The anti-involution σ1 ⊗ Id corresponds under this map to the
anti-involution σ ′ on Mat(2n, C) given by:

σ ′(m) = −
(

0 Idn
− Idn 0

)
mT

(
0 Idn

− Idn 0

)
.

The anti-involution σ1⊗σ̄ corresponds underψ to the complex conjugation composed
with transposition on Mat(2n, C).
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We define for x, y ∈ (A′′)2,

ω(x, y) := xT

⎛
⎜⎜⎝

0 Idn
− Idn 0

0

0
0 Idn

− Idn 0

⎞
⎟⎟⎠
(

0 Id2n
− Id2n 0

)
y

= xT

⎛
⎜⎜⎝

0 0 0 Idn
0 0 − Idn 0
0 − Idn 0 0
Idn 0 0 0

⎞
⎟⎟⎠ y,

h̃(x, y) := x̄ T
(

0 Id2n i
− Id2n i 0

)
y.

Then the projective model of the symmetric space for SO∗(4n) can be seen as:

P(SO∗(4n)) = {x A′′ | x ∈ (A′′)2, h̃(x, x) ∈ Herm+(2n, C)}.
We can see the Shilov boundary in this model as the space:

Š(SO∗(4n)) ∼= {x A′′ | x ∈ (A′′)2, h̃(x, x) = 0}.
Now we construct the projective model in terms of isotropic subspaces. As before,

we identify using the map L the space of A′-lines and the space Gr(4n, R
8n) of 4n-

dimensional subspaces of R
8n :

L(x A′) := SpanR(xe1, . . . , xe4n)

where ei is the i-th standard basis vector of R
4n . We define two forms on R

8n : for
u, v ∈ R

8n ,

ω̃(u, v) := uT

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 Idn
0 0 0 0 0 0 − Idn 0
0 0 0 0 0 Idn 0 0
0 0 0 0 − Idn 0 0 0
0 0 0 − Idn 0 0 0 0
0 0 Idn 0 0 0 0 0
0 − Idn 0 0 0 0 0 0
Idn 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

v,

h̃(u, v) := uT

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 Idn 0
0 0 0 0 0 0 0 Idn
0 0 0 0 − Idn 0 0 0
0 0 0 0 0 − Idn 0 0
0 0 − Idn 0 0 0 0 0
0 0 0 − Idn 0 0 0 0
Idn 0 0 0 0 0 0 0
0 Idn 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

v.
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The space of ω̃-isotropic vectors of R
8n is denoted by Is(ω̃). Then the projective

model of the symmetric space for O(4n, C) can be seen as:

P′(O(4n, C)) = {l ∈ Lag(R8n, ω̃) | ∀x ∈ l \ {0}, h̃(x, x) > 0}

where Lag(R8n, ω̃) is the space of all maximal ω̃-isotropic subspaces of R
8n .

We can see the Shilov boundary in this model as the space:

Š(O(4n, C)) ∼= {l ∈ Lag(R8n, ω̃) | ∀x ∈ l \ {0}, h̃(x, x) = 0}.

The projective model for the symmetric space of SO∗(4n) can be seen as a subspace
of P(O(4n, C)):

P′(SO∗(4n)) = {l ∈ P(O(4n, C)) | δ(l) = l},

where

δ : R
8n → R

8n

v �→
(

φ(Idn ⊗ j) 0
0 φ(Idn ⊗ j)

)
v.

To see another projective model for the symmetric space of SO∗(4n), we remind
that A = Mat(n, H) ⊗R C is to Mat(2n, C) =: A′′ isomorphic under the map ψ

from the Sect. B.1.2. The anti-involution σ1 ⊗ Id corresponds under this map to the
anti-involution σ ′ on Mat(2n, C) given by:

σ ′(m) = −
(

0 Idn
− Idn 0

)
mT

(
0 Idn

− Idn 0

)
.

The anti-involution σ1⊗σ̄ corresponds underψ to the complex conjugation composed
with transposition on Mat(2n, C).

To construct the projective model in terms of Lagrangians, as before, we identify
using the map L the space of A′′-lines and the space Gr(2n, C

4n) of 2n-dimensional
subspaces of C

4n :

L(x A′′) := SpanR(xe1, . . . , xe2n)

where ei is the i-th standard basis vector of C
2n . We define two forms on R

8n : for
u, v ∈ R

8n ,
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ω̃(u, v) := uT

⎛
⎜⎜⎝

0 Idn
− Idn 0

0

0
0 Idn

− Idn 0

⎞
⎟⎟⎠
(

0 Id2n
− Id2n 0

)
v

= uT

⎛
⎜⎜⎝

0 0 0 Idn
0 0 − Idn 0
0 − Idn 0 0
Idn 0 0 0

⎞
⎟⎟⎠ v,

h̃(u, v) := ūT
(

0 Idn i
− Idn i 0

)
v.

Then the projective model of the symmetric space for SO∗(4n) can be seen as:

P′(SO∗(4n)) = {l ∈ Lag(C4n, ω̃) | ∀x ∈ l \ {0}, h̃(x, x) > 0}

where Lag(C4n, ω̃) is the space of all maximal ω̃-isotropic subspaces of C
4n .

We can see the Shilov boundary in this model as the space:

Š(SO∗(4n)) ∼= {l ∈ Lag(C4n, ω̃) | ∀x ∈ l \ {0}, h̃(x, x) = 0}.

Example 7.14 Now we construct the “space of quaternionic structures” model and the
“space of complex structures” model.

We use the map ψ from the Sect. B.1.2, to identify A with A′ := Mat(2n, C{I }).

ψ : Mat(n, H{I , J , K }) ⊗R C{i} → Mat(2n, C{I })
(q1 + q2 J ) + (p1 + p2 J )i �→

(
q1 + p1 I q2 + p2 I

−q̄2 − p̄2 I q̄1 + p̄1 I

)
.

where q1, q2, p1, p2 ∈ Mat(n, C{I }).
The involution induced by Id⊗σ̄

σ ′ := ψ ◦ (Id⊗σ̄ ) ◦ ψ−1

on Mat(2n, C) acts in the following way:

m �→ −�m̄�

where � =
(

0 Idn
− Idn 0

)
∈ Mat(2n, C). We also denote by �0 := diag(�,�) ∈

Mat(4n, C).
If we take a quaternionic structure Q on A2 then we define

Q′ := ψ ◦ Q ◦ ψ−1.
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We can see Q′ as a complex 4n × 4n-matrix acting on (A′)2 in the following way: for
x ∈ (A′)2,

Q′(x) := Q′σ ′(x) = −Q′�0 x̄�0.

Q′ is a quaternionic structure, therefore,

−x = (Q′)2(x) = Q′�0Q′�0 x̄�0�0 = −Q′�0 Q̄
′�0x .

So we obtain, Q′ is a quaternionic structure on A if and only if

Q′�0 Q̄
′�0 = Id4n .

The anti-involution induced by σ1 ⊗ Id

ψ ◦ (σ1 ⊗ Id) ◦ ψ−1

on Mat(2n, C) acts in the following way:

m �→ −�mT�.

So we define the standard symplectic form ω on (A′)2 with respect to this anti-
involution: for x, y ∈ (A′)2,

ω(x, y) := −�0x
T�0

(
0 Id2n

− Id2n 0

)
y

and for a quaternionic structure Q′, we define

hQ′(x, y) := ω(Q′(x), y) = x̄ T�0(Q
′)T�0�0

(
0 Id2n

− Id2n 0

)
y

= −x̄ T�0(Q
′)T
(

0 Id2n
− Id2n 0

)
y.

The “space of quaternionic structures” model for GL(2n, C) is then:

C(O(4n, C)) :=
⎧⎨
⎩Q′ ∈ Mat(4n, C)

∣∣∣∣∣∣
Q′�0 Q̄′�0 = Id4n,

−�0(Q′)T
(

0 Id2n
− Id2n 0

)
∈ Herm+(4n, C)

⎫⎬
⎭ .

The model for the symmetric space of C(SO∗(4n)) can be seen as a subset of
C(O(4n, C)) whose elements commute with σ ′ i.e. σ ′(Q′(x)) = Q′(σ ′(x)). There-
fore:

σ ′(Q′(x)) = −�Q′(x)� = �Q′�x̄�� = −�Q̄′�x,

Q′(σ ′(x)) = −Q′�σ ′(x)� = Q′��x̄�� = −Q′x
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and we obtain:

C(SO∗(4n)) ∼= {Q′ ∈ C(O(4n, C)) | Q′ = �Q̄′�}.

The space C(SO∗(4n)) can be also seen directly as complex structures Q on A2
R

such that the form:

hQ(x, y) = σ1(x)
T σ1(Q)T�0y

is positive definite. So we obtain:

C(SO∗(4n))=
{
Q′ ∈ Mat(2n, H{i, j, k}

∣∣∣∣σ1(Q)T�0 ∈ Herm+(2n, H{I , J , K }),
Q2 = − Id2n

}
.

Appendix A: Classification of Hermitian algebras

The goal of this section is to classify all Hermitian algebras. To do this, we consider
a more general class of algebras that we call pre-Hermitian, and classify them.

Let (A, σ ) be a ring with an anti-involution σ . As usual, we say that a ∈ A is
symmetric if σ(a) = a, denote the set of all symmetric elements in A by Aσ . Clearly,
if 2 ∈ A×, then Aσ is a (unital) Jordan ring under the operation a ◦b = 2−1(ab+ba).

If A is an algebra over a commutative ring F and σ is F-linear, then we will refer
to (A, σ ) as an F-algebra.

Definition A.1 The Jacobson radical J (A) of a unital ring A is the set of all x ∈ A
such that 1 + Ax A ⊆ A×. In particular, 1 + J (A) is a subgroup of A×.

It is well-known (see e.g., [17]) that J (A) is a nilpotent ideal for any (left or right)
Artinian ring A. Moreover, such a ring is semisimple if and only if J (A) = {0}. In
particular, this holds for finite dimensional algebras over any field.

Proposition A.2 J (A) is invariant under any anti-involution of any ring A.

Proof Clearly, if σ is any anti-involution of A then 1+Aσ(x)A ⊂ A× for all x ∈ J (A)

hence σ(x) ∈ J (A).

Definition A.3 We say that a ring (A, σ ) is pre-Hermitian if Aσ ∩ J (A) = {0}.
If J (A) = {0}, A is sometimes called Jacobson semisimple (in particular, any C∗-

algebra is Jacobson semisimple as a consequence of Gelfand-Naimark theorem). Also
note that any R-subalgebra of Mat(n, C) invariant under the Hermitian transposition
is semisimple and, therefore, Jacobson semisimple (see [20], Exercise 18, p. 168). By
definition, any Jacobson semisimple (A, σ ) is pre-Hermitian.

Definition A.4 We say that a ring (A, σ ) is Hermitian if a2 + b2 = 0 for a, b ∈ Aσ

implies that a = b = 0.

In particular, nonzero symmetric elements of Hermitian rings are not nilpotent.
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Remark A.5 In contrast to themain part of this paper, we do not assume in this appendix
that a Hermitian ring is an algebra over a real closed field.

Remark A.6 If (A, σ ) is a Hermitian ring such that J (A) = {0}, then, similarly to the
Proposition 2.58, we can show that −a2 ∈ Aσ≥0 (See definition 2.11) for all a ∈ A−σ .

Remark A.7 Similarly to Aσ≥0, for any ring (A, σ ) denote by Aσ
>0 the set of all sums

a21 + · · · + a2n , n ≥ 1, where all ai are nonzero elements of Aσ . By definition, Aσ
>0

is an additive sub-semigroup of A, which may or may not contain 0. Clearly, Aσ≥0 =
Aσ

>0 ∪ {0}. Also, it is immediate that if 0 /∈ Aσ
>0, then (A, σ ) is Hermitian. It would

be interesting to classify those rings in which the opposite implication holds.

Proposition A.8 Any Hermitian ring A with nilpotent J (A) is pre-Hermitian.

Proof Assume, there exists 0 �= x ∈ J (A)∩ Aσ . Since J (A) is a nilpotent ideal, there
exist x ∈ J (A) such that a := xn �= 0 and a2 = 0 for some n > 0. Therefore, a = 0,
which is a contradiction.

Proposition A.9 Let (A, σ ) be a pre-Hermitian ring. Then σ(x) = −x and xy = −yx
for any x, y ∈ J (A). In particular, 2x2 = 0.

Proof Let x ∈ J (A). Since x + σ(x) ∈ J (A) ∩ Aσ = {0}, σ(x) = −x . Furthermore,
−xy = σ(xy) = σ(y)σ (x) = yx for x, y ∈ J (A).

Proposition A.10 If (A, σ ) is pre-Hermitian then:

(a) σ(x) = −x for all x ∈ J (A) and xa = σ(a)x for all x ∈ J (A), a ∈ A.
(b) yx = −xy for all x, y ∈ J (A) and xyz = 0 for all x, y, z ∈ J (A).
(c) (σ (a) − a)xy = xy(σ (a) − a) = 0 all a ∈ A, x, y ∈ J (A)

Proof Prove (a). Since σ(x) ∈ J (A) for all x ∈ J (A) by Proposition A.2, x +σ(x) ∈
J (A) ∩ Aσ = {0}. This proves the fist assertion. To prove the second assertion, using
the fact that xa ∈ J (A) for all x ∈ J (A), a ∈ A, we obtain

xa = −σ(xa) = −σ(a)σ (x) = σ(a)x .

This proves (a).
To prove (b) note that xy = −σ(xy) = −yx for all x, y ∈ J (A). To prove the

second assertion, note that

σ(xyz) = −zyx = −yxz = xyz

for all x, y, z ∈ J (A) hence xyz = 0. This proves (b).
To prove (c) note that on the one hand, xya = xσ(a)y = axy and on the other

hand, (xy)a = σ(a)(xy) for all a ∈ A and x, y ∈ J (A). This proves (c).
The proposition is proved.

Corollary A.11 If (A, σ ) and (B, σ ′) are pre-Hermitian algebras over F, char F �= 2
and (A, σ ) ⊗ (B, σ ′) is also pre-Hermitian, then either J (A) = {0} or J (B) = {0}.
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Proof Indeed, If x ∈ J (A), y ∈ J (B), then x⊗ y ∈ (A⊗B)σ⊗σ ′
by Proposition A.10.

Example A.12 Let V be a finite-dimensional vector space over a field F , char F �= 2,
Â = �(V ) be the exterior algebra of V , and σ̂ be the unique anti-involution of Â
such that σ̂ (v) = −v for all v ∈ V . Denote by A the quotient of Â by the ideal
generated by �3V , so that A = F ⊕ V ⊕ �2V as a vector space. Since σ̂ preserves
the ideal generated by �3V , it induces a well-defined anti-involution σ on A. Clearly,
J (A) = V ⊕ �2V and σ(x) = −x for all x ∈ J (A). Thus, (A, σ ) is pre-Hermitian
with Aσ = F and Aσ

>0 = F>0.

Proposition A.13 Let A be a pre-Hermitian ring. Then

A◦ · J (A) = J (A) · A◦ = 0

where A◦ = A · [A, A] = [A, A] · A is the ideal of A generated by all commutators
[a, b] = ab − ba, a, b ∈ A.

Proof It follows from Proposition A.10 that

abx = xσ(ab) = xσ(b)σ (a) = bxσ(a) = bax

for all a, b ∈ A, x ∈ J (A) hence [a, b]x = 0. Also, x[a, b] = [σ(b), σ (a)]x = 0.
The proposition is proved.

Example A.14 A◦ = A if A is simple noncommutative and (Matn(A))◦ = Matn(A) if
A◦ = A.

The following definition is motivated by Proposition A.10.

Definition A.15 We say that a (unitless) ring J is nilpotent pre-Hermitian if:

• 2x = 0 implies that x = 0 (this is relevant only in characteristic 2).
• yx = −xy and xyz = 0 for all x, y, z ∈ J .

Clearly, for any nilpotent pre-Hermitian ring J with 0 /∈ 2(J \{0}), the assignments
j �→ − j define an anti-involution on J with no fixed points in J \ {0}.
Let J be a ring and K be a commutative ring that acts on J from the left. We denote

the action by:

�: K × J → J
(k, j) �→ k� j .

Similarly, if K acts in J from the right, we denote the action by:

�: J × K → J
( j, k) �→ j�k.
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We say that a ring J is a left K -algebra if J is a left K -module with respect to � and

k�( j j ′) = (k� j) j ′

for all j, j ′ ∈ J , k ∈ K (so we will sometimes denote it simply by k� j j ′).
We say that a ring J is a right K -algebra if J is a right K -module with respect to �
and

( j j ′)�k = j( j ′�k)

for all j, j ′ ∈ J , k ∈ K (so we will sometimes denote it simply by j j ′�k).
Definition A.16 Let K be a commutative unital ringwith an involution ·, J be a unitless
K -algebra and γ : K → J be a homomorphism of abelian groups. We say that J is a
(K , ·, γ )-algebra if:

j(γ (kk′) − k�γ (k′) − k′�γ (k) − γ (k)γ (k′)) = 0,

j(k� j ′) = (k� j − jγ (k)) j ′, (k − k)� j j ′ = jγ (k) j ′
(1.3)

for all j, j ′ ∈ J , k, k′ ∈ K .

When J satisfies J 3 = 0, e.g., when J is pre-Hermitian, the conditions (1.3)
simplify to

j(γ (kk′) − k�γ (k′) − k′�γ (k)) = 0,

j(k� j ′) = k� j j ′ = k� j j ′ (1.4)

for all j, j ′ ∈ J , k ∈ K .

Proposition A.17 Let K be a commutative unital ring and J be a (K , ·, γ )-algebra.
Then:

(a) J ⊕K has a structure of an associative unital ring with the multiplication given
by

( j + k)( j ′ + k′) = j j ′ + k� j ′ + k′� j − jγ (k′) + kk′ (1.5)

for all j, j ′ ∈ J , k, k′ ∈ K (we denote this ring by J �γ K and refer to as semidirect
sum of J and K over γ ).

(b) J is a two-sided ideal in J �γ K, moreover, the projection to the second factor
is a surjective homomorphism J �γ K � K of rings whose kernel is J .

(c) Suppose that 2 ∈ K× and γ (kk′) = k�γ (k′)+k′�γ (k)−γ (k)γ (k′)+ γ (k)γ (k′)
2

for all k, k′ ∈ K. Then the assignments k �→ ι(k) := k + γ (k)
2 define an injective ring

homomorphism ι : K ↪→ J�γ K. Suppose additionally that jγ (k) = 2 jγ (k)+γ (k) j
for all j ∈ J , k ∈ K. Then J �γ K = J �0 ι(K ).
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Proof Define a map � : J × K → J by

j�k := k� j − jγ (k) .

Lemma A.18 � is an action of K on J commuting with � and ( j j ′)�k = j( j ′�k) for
all j, j ′ ∈ J , k ∈ K, (i.e., J is a right K -algebra).

Proof First, show that � commute with �. Indeed,

(k� j)�k′ = k′�(k� j) − (k� j)γ (k′) = k�(k′� j) − k� jγ (k′) = k�( j�k′)

for all j ∈ J , k, k′ ∈ K because J is a left K -algebra.
Furthermore, ( j�k)�k′ = k′�( j�k) − ( j�k)γ (k′) = kk′� j − k′� jγ (k) −

( j�k)γ (k′)

kk′� j − ( j�k′)γ (k) − jγ (k)γ (k′) − ( j�k)γ (k′) = kk′� j − jγ (k′k) = j�(kk′)

for all k, k′ ∈ K , j ∈ J by the commutation of � with � and the first condition of
(1.3).

Since Jγ (1) = {0} by the first condition (1.3), i.e., �1 = I dJ , this proves that J is
a K -module under �.

Finally,

j( j ′�k) = j(k� j ′ − j ′γ (k)) = k� j j ′ − jγ (k) j ′

− j j ′γ (k) = k� j j ′ − j j ′γ (k) = ( j j ′)�k

for all k, k′ ∈ K , j ∈ J by the second and third conditions of (1.3). This proves that
J is a right K -algebra under �.

The lemma is proved.

Note that the identity

( j�k) j ′ = j(k� j ′) (1.6)

for all k ∈ K , j, j ′ ∈ J is equivalent to the second condition (1.3).
The following is immediate and well-known.

Lemma A.19 Let R and S be associative ring, R is unitless, S is unital and R is an
S-bimodule such that

s�(rr ′) = (s�r)r ′, (rr ′)�s = r(r ′�s), (r�s)r ′ = r(s�r ′) (1.7)

for all r , r ′ ∈ R, s, s′ ∈ S. Then A := R ⊕ S is a unital associative ring with the
product given by

(r + s)(r ′ + s′) = rr ′ + s�r ′ + r�s′ + ss′

for all r , r ′ ∈ R, S, s′ ∈ S.
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Thus, (1.6) and Lemma A.18 guarantee that all assumptions of Lemma A.19 hold
for R = J , S = K , therefore, J ⊕ K is a unital associative ring. This proves (a).

Part (b) is obvious.

Prove (c). Indeed, ι(k)ι(k′) = (k + γ (k)
2 )(k′ + γ (k′)

2 ) = kk′ + k�γ (k′)+γ (k)�k′
2 +

γ (k)γ (k′)
4

= kk′ + k�γ (k′) + k′�γ (k) − γ (k)γ (k′)
2

+ γ (k)γ (k′)
4

= kk′ + γ (k′k)
2

= ι(kk′)

for all k, k′ ∈ K by the first relation (1.3). Therefore, ι is a homomorphism of rings.
Its injectivity follows because ι splits the canonical homomorphism from (b). Finally,

j ι(k) = j(k + γ (k)

2
) = k j − jγ (k) + jγ (k)

2
= k j + γ (k)

2
j = ι(k) j

for all j ∈ J , k ∈ K . This proves that J is a (ι(K ),̃ ·, 0)-algebra with the trivial γ = 0
and:

• The involution ·̃ defined by ι̃(k) = ι(k) for all k ∈ K .
• The left action of ι(k) on J by the left multiplication in J �γ K .
In particular, J �γ K = J �0 ι(K ). Part (c) is proved.
The proposition is proved.
Given a commutative ring (K , ·) with anti-involution, we say that a left K -algebra

J is a (K , ·)-algebra if

k� j j ′ = k� j j ′ = j(k� j ′)

for all j, j ′ ∈ J , k ∈ K . Clearly, (K , ·)-algebras are same as (K , ·, 0)-algebras.
Also, in view of (1.4), any nilpotent pre-Hermitian (K , ·, γ )-algebra is automatically
a (K , ·)-algebra.
Proposition A.20 Let (K , ·) be any commutative ring with anti-involution and let J be
any nilpotent pre-Hermitian ring. Suppose that J is a (K , ·)-algebra and let γ : K →
J be any homomorphism of abelian groups such that: γ (kk′) = k�γ (k′) + k′�γ (k)
for all k, k′ ∈ k. Then:

(a) J is a (K , ·, γ )-algebra.
(b) Suppose additionally that γ (k) = γ (k) for all k ∈ K. Then the assignments

j + k �→ γ (k) − j + k define an anti-involution σ on J �γ K. Moreover, if K is
semisimple (i.e., is a direct sum of fields), then (J �γ K , σ ) is pre-Hermitian.

Proof Prove (a). Indeed, the conditions (1.4) hold automatically for this choice of γ

and because J is (K , ·)-algebra. This proves (a).
Prove (b). First, let us verify that σ is an anti-involution. Indeed,

σ(σ( j + k))=σ(γ (k) − j + k)= j − γ (k) + σ(k)= j − γ (k) + k + γ (k) = j + k

for all j ∈ J , k ∈ K . That is, σ 2 = 1.
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Furthermore, by definition (1.5), jk = k j − jγ (k) = k j +γ (k) j = kσ(k) j hence
k j = jσ(k) for all j ∈ J , k ∈ K . Then

σ(kk′) = kk′ + γ (kk′) = kk′ + kγ (k′) + k′γ (k) = kk′ + k(σ (k′) − k
′
) + k′γ (k)

= kσ(k′) + γ (k)σ (k′) = σ(k)σ (k′)

for all k, k′ ∈ K . Clearly,

σ( j j ′) = − j j ′ = j ′ j = σ( j ′)σ ( j)

for all j, j ′ ∈ J . Also,

σ(k j) = σ(k� j) = −k� j = −k j = − jσ(k) = σ( j)σ (k)

σ ( jk) = σ(σ(k) j) = σ( j)σ (σ (k) = − jk = −σ(k) j = σ(k)σ ( j)

for all j ∈ J , k ∈ K .
This proves the first assertion. To prove the second assertion, note that semisim-

plicity of K and Proposition A.17(b) imply that Jacobson radical of J �γ K is J . This
finishes proof of (b).

The proposition is proved.

The following is an immediate corollary of Proposition A.20.

Corollary A.21 Let (A, σ ) be any pre-Hermitian ring and K be any commutative unital
subring of A such that K ∩ J (A) = {0} and σ(K ) ⊂ K + J (A). Then

(a) J (A) is both a (K , ·)-algebra and a (K , ·, γ )-algebra, where:

• J (A) is a K -algebra via left multiplication.
• · : K → K and γ : K → J (A) are determined by σ(k) = γ (k) + k for all

k ∈ K.

(b) The subring of A generated by K and J (A) is naturally isomorphic to J (A)�γ K.

Recall that F is a perfect field if every irreducible polynomial over F has distinct
roots. In particular, all fields of characteristic zero and all finite fields are perfect.

Theorem A.22 (Wedderburn-Mal’cev theorem (see [20], Exercise 18, p. 191)) Let R
be a finite dimensional algebra over a perfect field F. Then

(a) There is a splitting ι of the short exact sequence J (R) → R → S := R/J (R),
e.g., R = ι(S) ⊕ J (R).

(b) The images of all splittings ι : S ↪→ R are conjugate in R by 1 + J (R).

Remark A.23 In fact, the multiplication in R in Theorem A.22 is as in Lemma A.19
since J (R) is naturally a bimodule over Sι(S).

The following is immediate.
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Lemma A.24 In the assumptions of Theorem A.22 suppose that σ(ι(S)) = ι(S) for an
anti-involution σ of R and a splitting ι : S ↪→ R. Then Rσ = ι(S)σ ⊕ J (R)σ .

The following is well-known (cf. [20], Theorem 25C.17).

Theorem A.25 In the assumptions of Theorem A.22, there exists a faithful n-
dimensional representation ρ of R into the algebra of n-block upper triangular
matrices (for some partition n of n) such that ρ(J (R)) is in the block-strictly upper
triangular part of Mat(n, F) and the image under ρ of at least one splitting ι : S ↪→ R
is in the block-diagonal part of Mat(n, F).

We will use Theorem A.22 to finish the classification of finite-dimensional pre-
Hermitian algebras over perfect fields as follows.

Theorem A.26 Let (A, σ )beafinite-dimensional pre-Hermitian algebraover a perfect
field F, denote by K themaximal abelian ideal of the semisimple quotient S = A/J (A)

and by B its complement so that S = B ⊕ K. Then there is a unique copy of B in A
splitting the canonical homomorphism π : A � S, that is, A = B ⊕ K̃ , σ(B) = B,
σ(K̃ ) = K̃ , where K̃ = π−1(K ). More precisely, K̃ = J (A) if K = {0} and
K̃ ∼= J (A) �γ K otherwise (in the notation of Corollary A.21).

Proof Indeed, B◦ = B because each simple component C of B satisfies C◦ = C
since [C,C] �= 0. Furthermore, in the notation of Theorem A.22(a), fix a splitting
ι : S ↪→ A of homomorphism π : A � S. Then ι(B) = ι(B◦) = ι(B)◦ ⊂ A◦ hence
ι(B)J (A) = J (A)ι(B) = {0} by Proposition A.13. To prove the first assertion note
that, by Theorem A.22(b), the images of B under any splitting S ↪→ A are conjugate
to ι(B) by 1 + J (A). Since (1 + J (A))ι(b) = ι(b)(1 + J (A)) = ι(b) for all b ∈ B,
we see that ι(B) is a unique copy of B in A. In particular, σ(ι(B)) = ι(B).

Furthermore, by definition, σ(K̃ ) = K̃ and K̃ = ι(K ) + J (A) as a vector space
over F . Since ι(B)ι(K ) = ι(K )ι(B) = {0}, we see that ι(B)K̃ = K̃ ι(B) = {0}.
Therefore, A = B ⊕ K̃ , as an algebra.

If K = {0}, then, clearly, K̃ = J (A). Suppose that K �= {0}. Since σ(ι(K )) ⊂ K̃ =
ι(K ) + J (A), we see that ι(K ) satisfies the hypotheses of Corollary A.21. Therefore,
K̃ = J (A) �γ ι(K ).

The theorem is proved.

The following is immediate.

Corollary A.27 In the assumptions of Theorem A.26, one has

(a) If K = {0} then A is Hermitian if and only if B is Hermitian. Otherwise, A is
Hermitian if and only if both B and K̃ are Hermitian.

(b) If A is Hermitian, then

Aσ≥0 =
{
Bσ≥0 if K̃ = {0}
Bσ≥0 ⊕ K̃ σ≥0 otherwise

and Aσ+ =
{
Bσ+ if K̃ = {0}
Bσ+ ⊕ K σ+ otherwise

.

We discuss now anti-involutions on simple rings.
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Clearly, if (A, σ ) is a Hermitian algebra over a field F , then so is F , i.e., F is a
formally real field. In particular, if Aσ = F , then (A, σ ) is Hermitian if and only if F
is a formally real.

The following is an immediate consequence of the Skolem-Noether theorem.
For any ring (A, τ ) with an anti-involution τ denote by A[τ ] the set of all v ∈ A×

such that τ(v) = vz, for some z ∈ Z(A)× such that τ(z) = z−1 (In particular, if each
element of the center Z(A) is fixed under τ , then τ(v) ∈ {v,−v}, i.e., ). Clearly, the
assignments (w, v) �→ w�v := wvτ(w) define an action of the multiplicative group
A× on A[τ ].

Lemma A.28 Let (A, τ ) be a simple Artinian ring. Then

(a) For any anti-involution σ : A → A there is an element v ∈ A[τ ] (unique up to
multiplication by elements of the field Z(A)) such that σ(a) = vτ(a)v−1 for all
a ∈ A.

(b) For any v ∈ A[τ ] the assignments a �→ vτ(a)v−1 define an involution σv on A.
(c) For any w ∈ A× the assignments a �→ waw−1 define an isomorphism of rings

with anti-involution (A, σv)→̃(A, σw�v).

Definition A.29 We say that an algebra (A, σ ) over F is thin if Aσ = F .

The first example of a thin algebra is given by Example A.12. Another one is a
(generalized) quaternion algebra (see Remark A.33 below).

Clearly every thin algebra (A, σ ) over F is pre-Hermitian and the direct sum of two
F-algebras is never thin because (A⊕ A′)σ⊕σ ′ = Aσ ⊕ A′σ ′

. Moreover, the following
is an immediate consequence of Theorem A.26.

Lemma A.30 If a finite-dimensional algebra (A, σ ) over a perfect field F with
char(F) �= 2 is thin then it is either simple noncommutative, or direct sum of two
copes of a simple algebra interchanged by σ , or pre-Hermitian whose semisimple
quotient A/J (A) is a field extension of F.

Proposition A.31 Let F be a perfect field with char(F) �= 2 and (A, σ ) be a thin
semisimple finite-dimensional algebra over F. Then:

(a) A = F⊕A−σ where A−σ = {a ∈ A : σ(a) = −a} is the space of skew-symmetric
elements.

(b) A−σ admits a unique nonsingular symmetric bilinear form β such that aa′+a′a =
−β(a, a′) for all a ∈ A−σ .

(c) If a is a nilpotent element in A then a ∈ A−σ and a2 = 0.
(d) A−σ is a Lie algebra with respect to the commutator bracket [a, a′] = aa′−a′a =

2aa′ + β(a, a′)
(e) 2a′′a′a − 2aa′a′′ = β([a, a′], a′′) = β(a, [a′, a′′]) and β([a, a′], [a, a′]) =

β(a, a)β(a′, a′) − β(a, a′)2 for a, a′, a′′ ∈ A−σ .

Proof Part (a) is obvious because Aσ = F . To prove (b) note that β̂(a, a′) := −aa′ −
a′a is fixed by σ and thus belongs to F for all a, a′ ∈ A. This is obviously a symmetric
bilinear form on A, denote by β its restriction to A−σ . If z is in the radical of β, then
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za + az = 0 for all a ∈ A−σ , which implies that z = 0 by Lemma A.30. This proves
(b).

Prove (c). Let a ∈ A be a nilpotent and suppose that a /∈ A−σ . Then there exists
c ∈ F× such that the nilpotent element b := ca satisfies σ(b) = 1 − b. Therefore,
(1 − b)n = 0 for some n ≥ 2. This contradicts to the non-invertibility of b. Thus,
σ(a) = −a and a2 is a nilpotent in Aσ = F , that is, a2 = 0.

Part (d) is obvious because σ([a, a′]) = −[a, a′] for all a, a′ ∈ Aσ .
Prove (e). Indeed,

β([a, a′], a′′) = −[a, a′]a′′ − a′′[a, a′] = −(2aa′ + β(a, a′))a′′

−a′′(−2a′a − β(a′, a))

= 2a′′a′a − 2aa′a′′ = −β([a′′, a′], a)

for all a, a′, a′′ ∈ Aσ . This proves the first assertion. To prove the second one, compute

β([a, a′], [a, a′]) = 2(aa′ − a′a)a′a + 2aa′(a′a − aa′)
= −2(aa′ + a′a)a′a − 2aa′(a′a + aa′) + 4aa′2a + 4a′a2a′

= 2β(a, a′)(aa′ + a′a) − 2a2β(a′, a′)
−2a′2β(a, a) = β(a, a)β(a′, a′) − β(a, a′)2

for all a, a′ ∈ A−σ . This proves (d).
The proposition is proved.

Theorem A.32 Let F be a perfect field with char(F) �= 2 and (A, σ ) be a thin
semisimple finite-dimensional algebra over F. Then A is either a division algebra
over F with dimF A ∈ {1, 2, 4} or A = F ⊕ F (so that σ is the permutation of
summands).

Proof Indeed, any simple component of A is Matn(D), where D is a division algebra
over F . Note that if n ≥ 3, then A contains an element e = e12+e23 which contradicts
to Proposition A.31(c). Thus, n ≤ 2 and A ∈ {D, D ⊕ D,Mat2(D),Mat2(D) ⊕
Mat2(D)} by Lemma A.30. Note, however, that the last two algebras are not thin. If
A = D ⊕ D, then (x, σ (x)) ∈ Aσ for all x ∈ D, i.e. we always have a copy of D in
Aσ = F , that is, D = F .

The theorem is proved.

For any ring F and α, β ∈ F denote by Hα,β the F-algebra with a presentation:

Hα,β = 〈i, j | i2 = α, j2 = β, j i = −i j〉 .

Clearly, it admits a unique anti-involution · such that i = −i , j = − j . By construction,
aa = aa ∈ F for all a ∈ Hα,β . In particular, Hα,β is a division algebra if and only if
F is a field and aa ∈ F× for all nonzero a ∈ Hα,β .

Remark A.33 Any 4-dimensional division algebra D over a field F with char F �= 2
is isomorphic to Hα,β for some non-squares α, β ∈ F×. Clearly, it is thin with the
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above anti-involution ·. Note that if both −α and −β are complete squares in F , then
Hα,β

∼= H−1,−1 is the ordinary algebra of quaternions.

Remark A.34 Suppose that char F �= 2 and the algebraic closure F of F is a quadratic
extension of F . Then any division algebra over F is isomorphic to either F or to some
Hα,β .

Generalizing the above observations, we construct some twisted group algebras of
abelian groups with anti-involutions. Recall that, given a group G and its linear action
� on a commutative ring K , a map χ : G × G → K is called a 2-cocycle on G (in
K ) if

(g � χ(g′, g′′))χ(g, g′g′′) = χ(g, g′)χ(gg′, g′′)

for all g, g′, g′′ ∈ G.
Furthermore, denote by KχG the χ -twisted group algebra of G, i.e., a K -algebra

with a free K -basis {[g], g ∈ G} and the multiplication table:

[g][g′] = χ(g, g′) · [gg′], [g]k = g � k · [g]

for all g, g′ ∈ G, k ∈ K . It is well-known that any central simple (e.g., a division)
algebra A over a field F = KG is isomorphic to some KχG so that K is a Galois field
extension of F .

The following is immediate.

Lemma A.35 Let · be an involution on K . Then the following statements are equivalent
for a 2-cocycle χ : G × G → K:

(a) The assignments k · [g] �→ [σ(g)] · k for g ∈ G, k ∈ K define an anti-involution
on KχG.

(b) σ(g) � k = g−1�k and χ(g, g′) = gg′ � χ(σ(g′), σ (g)) for all g, g′ ∈ G, k ∈ K.

In particular, if the G-action � is trivial, the cocycle conditions simplifies:

χ(gg′, g′′)χ(g, g′) = χ(g, g′g′′)χ(g′, g′′)

for all g, g′, g′′ ∈ G (e.g., χ is a bicharacter of G).
The following is immediate.

Lemma A.36 Let G be an abelian group, trivially acting on K , · be an anti-involution
on K and ε : G → K×, g �→ εg be a map. Then the following are equivalent:

(a) The assignments k · [g] �→ kεg · [g] for g ∈ G, k ∈ K define an anti-involution
σε on KχG.

(b) εg = ε−1
g and χ(g′, g) = χ(g, g′)εgg′ε−1

g ε−1
g′ for all g, g′ ∈ G.

In particular, (KχG)σε = ⊕
g∈G

Kg · [g], where Kg = {k ∈ K : k = k · εg} for all
g ∈ G.

Now we classify anti-involutions on 4-dimensional division algebras.
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Proposition A.37 In the notation as above, suppose that Hα,β is a noncommutative
division algebra (over a field F). Then any anti-involution on Hα,β is either · or is
given by

σ(a) = vxv−1

for some nonzero imaginary v, i.e., such that v = −v (in what follows, we denote the
latter anti-involution by σv).

Proof By Skolem-Noether theorem, any anti-involution σ on Hα,β can be written as
σ(x) = vxv−1 where v ∈ H

×
α,β . Then σ 2(a) = uau−1 where u = vv−1. Since

σ 2 = 1, we have a = uau−1 for all a ∈, i.e. u is central in Hα,β . That is u = c ∈ F×.
This implies that v = c−1v hence either c = 1, v ∈ F× or c = −1, v = −v.

Proposition A.38 In the assumptions of Proposition A.37, for any nonzero imaginary
v ∈ Hα,β there exist imaginary w,w′ such that [w,w′] = v and {1, w,w′, v} is a
basis of Hα,β . In particular, vw = −wv, vw′ = −w′v, ww′ + w′w ∈ F, (Hα,β)σv =
F + Fw + Fw′ and (Hα,β)−σv = F · v.

Proof Denote by V the set of all imaginary elements of Hα,β . For an imaginary v

define an F-linear map fv : V → Hα,β by fv(a) := va+av. Clearly, the range of fv
is F , in particular, Ker fv is a 2-dimensional subspace of the (3-dimensional) space
V . Then

σv(a) = vav−1 = −vav−1 = avv−1 = a

for any a ∈ Ker fv . That is, F + Ker fv ⊂ (Hα,β)σv . Since v ∈ (Hα,β)−σv , we see
that F + Ker fv = (Hα,β)σv and (Hα,β)−σv = Fv.

Therefore, [w,w′] ∈ F×v for any basis {w,w′} of Ker fv .
The proposition is proved.

Note that if H = H−1,−1 is the ordinary quaternion algebra over R, then w2 =
−ww < 0 for any imaginary w ∈ H, hence (

√−w2)2 + w2 = 0 and we obtain the
following immediate corollary of Proposition A.38.

Corollary A.39 The algebra (H, σ ) is Hermitian if and only if σ = ·.
We conclude the section with recalling the Cayley-Dickson construction of (gen-

eralized) octonions Oα,β := Hα,β ⊕ Hα,β , as a free module over a ring F with the
following multiplication table

(a, b)(a′, b′) = (aa′ − b′b, b′a + b a′) .

This is a non-associative F-algebra with the anti-involution given by

(a, b) = (a,−b)

so that (a, b)(a, b) = (a, b)(a, b) = (aa + bb, 0) for all a, b ∈ Oα,β . In particular, if
Hα,β is a division algebra, then Oα,β is a non-associative division algebra as well.
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Appendix B: Isomorphisms and embeddings of matrix algebras

Some tensor products and direct products of matrix algebras are related in a way we
want to discuss in this section. The described in here isomorphisms and embeddings
are used in the main part of the paper as a tool to construct symmetric spaces and study
their properties.

As usual, for every algebra A and (anti-)involution σ , we denote by Aσ the set of
fixed points of σ in A.

We also remind our standard notation of anti-involutions on matrix algebras.

(1) If A is Mat(n, R) or Mat(n, C), then the anti-involution given by the transposition
of the matrix is denoted by σ .

(2) If A is Mat(n, C), then by σ̄ is denoted the anti-involution given by σ composed
with the complex conjugation.

(3) If A is Mat(n, H{i, j, k}), then the anti-involution σ0 : A → A is given by the
rule σ0(r1 + r2 j) = σ(r1) + σ̄ (r2) j where r1, r2 ∈ Mat(n, C{i}). Another anti-
involution σ1 : A → A is given by the rule σ1(r1 + r2 j) = σ̄ (r1) − σ(r2) j where
r1, r2 ∈ Mat(n, C{i}).

If n = 1, we identify the algebra of 1×1 matrices with the corresponding (skew-)field
and use the same notation for the (anti-)involution in a (skew-)field as in the matrix
algebra over this (skew-)field, in particular, in this case σ is the identity map on R or
C, σ̄ is the complex conjugation on C and σ1 is the quaternionic conjugation on H.

B.1 Three isomorphisms of matrix algebras

In this section, we describe three well-known matrix algebras isomorphisms.

B.1.1 Mat(n, C) ⊗R C andMat(n, C) × Mat(n, C)

Fact B:1 The following map is an isomorphism of C{i}-algebras:

χ : Mat(n, C{I }) ⊗R C{i} → Mat(n, C{i}) × Mat(n, C{i})
a + bI �→ (a + bi, a − bi)

where a, b ∈ Mat(n, C{i}). In particular,

χ(Id I ⊗ 1) = (i,−i), χ(Id⊗i) = (i, i).

The anti-involution induced by σ ⊗ Id

χ ◦ (σ ⊗ Id) ◦ χ−1

on Mat(n, C{i}) × Mat(n, C{i}) acts in the following way:

(m1,m2) �→ (mT
1 ,mT

2 ).
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The anti-involution induced by σ̄ ⊗ Id

χ ◦ (σ̄ ⊗ Id) ◦ χ−1

on Mat(n, C{i}) × Mat(n, C{i}) acts in the following way:

(m1,m2) �→ (mT
2 ,mT

1 ).

The involution induced by Id⊗σ̄

χ ◦ (Id⊗σ̄ ) ◦ χ−1

on Mat(n, C{i}) × Mat(n, C{i}) acts in the following way:

(m1,m2) �→ (m̄2, m̄1).

Therefore:

χ((Mat(n, C{I }) ⊗R C{i})σ̄⊗Id) = {(m,mT ) | m ∈ Mat(n, C{i})},
χ((Mat(n, C{I }) ⊗R C{i})σ̄⊗σ̄ ) = Herm(n, C{i}) × Herm(n, C{i}),

χ(Mat(n, C{I })) = χ((Mat(n, C{I }) ⊗R C{i})Id⊗σ̄ )

= {(m, m̄) | m ∈ Mat(n, C{i})}.

B.1.2 Mat(n, H) ⊗R C andMat(2n, C)

Fact B:2 The following map is an isomorphism of algebras:

ψ : Mat(n, H{i, j, k}) ⊗R C{I } → Mat(2n, C{i})
(q1 + q2 j) + (p1 + p2 j)I �→

(
q1 + p1i q2 + p2i

−q̄2 − p̄2i q̄1 + p̄1i

)
.

where q1, q2, p1, p2 ∈ Mat(n, C{i}). This is a C{I }-C{i}-isomorphism, i.e. ψ(x I ) =
ψ(x)i for x ∈ Mat(n, H{i, j, k}) ⊗R C{I }. In particular,

χ(Id i ⊗ 1) =
(
Id i 0
0 − Id i

)
, χ(Id⊗ j) =

(
0 Id

− Id 0

)
,

χ(Id k ⊗ 1) =
(

0 Id i
Id i 0

)
, χ(Id⊗I ) = Id i .

The anti-involution induced by σ0 ⊗ Id

ψ ◦ (σ0 ⊗ Id) ◦ ψ−1



82 Page 114 of 119 D. Alessandrini et al.

on Mat(2n, C) acts in the following way:

m �→
(
Id 0
0 − Id

)
mT

(
Id 0
0 − Id

)
.

The anti-involution induced by σ1 ⊗ Id

ψ ◦ (σ1 ⊗ Id) ◦ ψ−1

on Mat(2n, C) acts in the following way:

m �→ −
(

0 Id
− Id 0

)
mT

(
0 Id

− Id 0

)
=
(
0 i
−i 0

)
mT

(
0 i
−i 0

)
.

The involution induced by Id⊗σ̄

ψ ◦ (Id⊗σ̄ ) ◦ ψ−1

on Mat(2n, C) acts in the following way:

m �→ −
(

0 Id
− Id 0

)
m̄

(
0 Id

− Id 0

)
=
(
0 i
−i 0

)
m̄

(
0 i
−i 0

)
.

The anti-involution induced by σ0 ⊗ σ̄

ψ ◦ (σ0 ⊗ σ̄ ) ◦ ψ−1

on Mat(2n, C) acts in the following way:

m �→
(
0 Id
Id 0

)
m̄T

(
0 Id
Id 0

)
.

Therefore:

ψ((Mat(n, H{i, j, k}) ⊗R C{I })σ1⊗Id)

=
{
m ∈ Mat(2n, C{i})

∣∣∣∣m = −
(

0 Id
− Id 0

)
mT

(
0 Id

− Id 0

)}

= o

(
0 Id

− Id 0

)
= sp(2n, C),

ψ((Mat(n, H{i, j, k}) ⊗R C{I })σ0⊗σ̄ )

=
{
m ∈ Mat(2n, C{i})

∣∣∣∣m =
(
0 Id
Id 0

)
m̄T

(
0 Id
Id 0

)}
,

ψ((Mat(n, H{i, j, k}) ⊗R C{I })σ1⊗σ̄ ) = Herm(2n, C),

ψ(Mat(n, H{i, j, k})) = ψ((Mat(n, H{i, j, k}) ⊗R C{I })Id⊗σ̄ )
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=
{
m ∈ Mat(2n, C{i})

∣∣∣∣m = −
(

0 Id
− Id 0

)
m̄

(
0 Id

− Id 0

)}

=
{(

q1 q2
−q̄2 q̄1

) ∣∣∣∣ q1, q2 ∈ Mat(n, C{i})
}

.

B.1.3 Mat(n, H) ⊗R H andMat(4n, R)

Fact B:3 The following map:

φ : Mat(n, H{I , J , K }) ⊗R H{i, j, k} → Mat(4n, R)

defined on generators of AH as follows:

φ(a ⊗ i) =

⎛
⎜⎜⎝

0 a 0 0
−a 0 0 0
0 0 0 −a
0 0 a 0

⎞
⎟⎟⎠ , φ(a ⊗ j) =

⎛
⎜⎜⎝

0 0 a 0
0 0 0 a

−a 0 0 0
0 −a 0 0

⎞
⎟⎟⎠ ,

φ(a ⊗ k) =

⎛
⎜⎜⎝

0 0 0 a
0 0 −a 0
0 a 0 0

−a 0 0 0

⎞
⎟⎟⎠ , φ(aI ⊗ 1) =

⎛
⎜⎜⎝
0 −a 0 0
a 0 0 0
0 0 0 −a
0 0 a 0

⎞
⎟⎟⎠ ,

φ(aJ ⊗ 1) =

⎛
⎜⎜⎝
0 0 −a 0
0 0 0 a
a 0 0 0
0 −a 0 0

⎞
⎟⎟⎠ , φ(aK ⊗ 1) =

⎛
⎜⎜⎝
0 0 0 −a
0 0 −a 0
0 a 0 0
a 0 0 0

⎞
⎟⎟⎠

where a ∈ Mat(n, R) is an R-algebra isomorphism.

The anti-involution σ1 ⊗ σ0 corresponds under φ to the following anti-involution

φ ◦ (σ1 ⊗ σ0) ◦ φ

on Mat(4n, R): m �→ −�mT� where

� :=

⎛
⎜⎜⎝

0 0 0 Idn
0 0 − Idn 0
0 Idn 0 0

− Idn 0 0 0

⎞
⎟⎟⎠ .

The anti-involution σ1⊗σ1 corresponds underφ to the transposition onMat(4n, R).
Therefore:

φ((Mat(n, H{I , J , K }) ⊗R H{i, j, k})σ1⊗σ0)

=
{
m ∈ Mat(4n, R) | m = −�mT�

}
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= o(�) ∼= sp(4n, R),

φ((Mat(n, H{i, j, k}) ⊗R H{i, j, k})σ1⊗σ1) = Sym(4n, R),

The real locusMat(n, H{I , J , K }) ofMat(n, H{I , J , K })⊗RH{i, j, k} is mapped
by φ to:

φ(Mat(n, H{I , J , K }))

=

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
a −b −c −d
b a −d c
c d a −b
d −c b a

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
a, b, c, d ∈ Mat(n, R)

⎫⎪⎪⎬
⎪⎪⎭

.

B.2 Embeddings betweenmatrix algebras

In this section, we consider the following two embeddings:

Mat(n, C{I }) ⊗ C{ j} ↪→ Mat(n, C{I }) ⊗ H{i, j, k},
Mat(n, H{I , J , K }) ⊗ C{ j} ↪→ Mat(n, H{I , J , K }) ⊗ H{i, j, k}.

We use these embedding to see the symmetric space for a real group inside the sym-
metric space for a complexified group.

B.2.1 Embedding Mat(n, C{I}) ⊗ C{j} ↪→ Mat(n, C{I}) ⊗ H{i, j, k}

In the previous sections, we have seen the isomorphisms:

χ : Mat(n, C{I }) ⊗R C{ j} → Mat(n, C{ j}) × Mat(n, C{ j})
a + bI �→ (a + bj, a − bj)

where a, b ∈ Mat(n, C{ j}) and

ψ : Mat(n, C{I }) ⊗R H{i, j, k} → Mat(2n, C{i})
(q1 + q2 j) + (p1 + p2 j)I �→

(
q1 + p1i q2 + p2i

−q̄2 − p̄2i q̄1 + p̄1i

)
.

where q1, q2, p1, p2 ∈ Mat(n, C{i}).
We want to describe the map

ψ ◦ ι ◦ χ−1 : Mat(n, C{ j}) × Mat(n, C{ j}) → Mat(2n, C{i})

where

ι : Mat(n, C{I }) ⊗ C{ j} ↪→ Mat(n, C{I }) ⊗ H{i, j, k}
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is the natural embedding. Let (a, b) := (a1 + a2 j, b1 + b2 j) ∈ Mat(n, C{ j}) ×
Mat(n, C{ j}) for a1, a2, b1, b2 ∈ Mat(n, R), then

χ−1(a, b) = a + b

2
+ a − b

2 j
I = a1 + b1 + (a2 + b2) j

2
+ a2 − b2 − (a1 − b1) j

2
I .

Therefore,

ψ(χ−1(a, b)) = 1

2

(
a1 + b1 + (a2 − b2)i a2 + b2 − (a1 − b1)i

−(a2 + b2) + (a1 − b1)i a1 + b1 + (a2 − b2)i

)
.

We also describe the image of the map ψ ◦ ι ◦ χ−1:

Im(ψ ◦ ι ◦ χ−1) =
{(

q p
−p q

) ∣∣∣∣ p, q ∈ Mat(n, C{i})
}

=
{
m ∈ Mat(2n, C{i})

∣∣∣∣m = −
(

0 Id
− Id 0

)
m

(
0 Id

− Id 0

)}
.

B.2.2 Embedding Mat(n, H{I, J, K}) ⊗ C{j} ↪→ Mat(n, H{I, J, K}) ⊗ H{i, j, k}

In the previous sections, we have seen the isomorphisms:

ψ : Mat(n, H{I , J , K }) ⊗R C{ j} → Mat(2n, C{I })
(q1 + q2 J ) + (p1 + p2 J ) j �→

(
q1 + p1 I q2 + p2 I

−q̄2 − p̄2 I q̄1 + p̄1 I

)
.

where q1, q2, p1, p2 ∈ Mat(n, C{I }) and

φ : Mat(n, H{I , J , K }) ⊗R H{i, j, k} → Mat(4n, R)

defined as in the Sect. B.1.3.
We want to describe the image of the map

φ ◦ ι ◦ ψ−1 : Mat(2n, C{I }) → Mat(4n, R)

where

ι : Mat(n, H{I , J , K }) ⊗ C{ j} ↪→ Mat(n, H{I , J , K }) ⊗ H{i, j, k},

is the natural embedding.
Note that an element x ∈ Mat(n, H{I , J , K }) ⊗ H{i, j, k} is contained in the

subalgebra Mat(n, H{I , J , K }) ⊗ C{ j} if and only if x commutes with 1 ⊗ j . So we
obtain:

Im(ψ ◦ ι ◦ χ−1) = {m ∈ Mat(4n, R) | m = −φ(Idn ⊗ j)mφ(Idn ⊗ j)} .
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